
AD-A253 070

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
SlELECTE

JUL 20 1992U

THESIS

PRIVATE AND SHARED DATA
IN

OBJECT-ORIENTED PROGRAMMING

by

Vassilios Theologitis

March, 1992

Thesis Advisor: Michael L. Nelson

Approved for public release; distribution is unlimited.

92-1904892 7 i'i 056 lg|lil~

UNCLASSIFIED
SECURITY CLASSIFICATION4 OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIID 11). RIESTRICTIVE MARKINGS

2a SECURITY CLAkSSIFICATION AUTHORITY 3 ITRB1ONAVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRAVING SCHEDJULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITOING ORGANIZATIO)N REPOT NUMBER(S)

4 NAE OFgEEFORAWhG ORGANIZATION 6b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
Coptr Cnc pt. (if bloe) Naval Postgraduate School

*Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City Stale, and ZIP Coda)

Monterey, CA 939435000 Monterey, CA 93943-5000

8a. NAME OF FUNDINGISPONSORING I8b. OF FICE SYMBOL 9. PROUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION if 4Wwb

8c. ADDRESS (City State. and ZIP (Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT -- ITAS WORK UNIT
ELEMENT NO. NO. ACCESION NO.

11. TITLE (Include Security Classification)
PRIVATE AND SHARED DATA IN OBJECT-ORIENTED PROGRAMMING

e ORT VER~r14. DATE OF REPORT (Yea, AMnt, Day)
aister S I51 FROM .01/90 TO .03/92 1 1992, March, 19 117

16. UPPEMETARYROTTIO The views expressed in this thesis are those of the'author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI ODES I18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIEL I GOUP , SU-GROP IObject-Oriented, shared data,concurrency, distributed systems

IE GRU IU-QU

19 ABSTRACT (Continue on reverse if necessary and identfy by block number)
In a typical object-oriented system, there are two kind of variables: those which are private to instances(objects) and those

which are shared by all instances of a class. Variables may also be declared in some object-oriented languages as private, public,
or subtype visible which affects the acess to the data. However we know of no object-oriented programming which allows
data(variables) to be daclared as private for specific methods only. The purpose of this thesis is to propose a solution to the
problems of implementing and maintaining both shared and private data at various levels within an object-oriented
environment..

0.DSRBTOAALBLTOFASR 12.ASRCSEUIYCASFUI U

UNCLASSIFIEDUNLIMITED r] SAME AS RPT. Q OTIC USERS IJNCLASSFTID

Wc a . so n e

DD FORM 1473,6e4 MAR 83 APR editon may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All odbe editons arm obs,.ete UNCLASSIFI7ED

....i.

Approved for public release; distribution is unlimited

PRIVATE AND SHARED DATA
IN

OBJECT-ORIENTED PROGRAMMING

by
Vassilios Theologitis

Lieutenant, Hellenic Navy
B.S., Hellenic Naval Academy, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOLMarch 1992

Author:
ThlosIeologitis

Approved By: _ _ _ _ _ _ _ _

Michael L. Nelson, Thesis Advisor

CMlihes, S ond Reader

SRobe hee , 1iairman,
f(Department of Computer Science

ii

ABSTRACT

In a typical object-oriented system, there are two kind of variables: those

which are private to instances(objects) and those which are shared by all instances

of a class. Variables may also be declared in some object-oriented languages as

private, public, or subtype visible which affects the access to the data. However

we know of no object-oriented programming which allows data(variables) to be

declared as private for specific methods only. The purpose of this thesis is to

propose a solution to the problems of implementing and maintaining both shared

and private data at various levels within an object-oriented environment.

Aooeesslon r
PTIS GRA&I
DTIC TAB 0

Unannounced 0
Just ification

By
Distribution/
Availability Codes

Pvaii and/or
No1t spsoiai

lif

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKGROUND 1

B. RESEARCH OBJECTIVES 2

C. ORGANIZATION 3

II. BACKGROUND ... 4

A. OBJECT-ORIENTED CONCEPTS 4

1. Basic Concepts 4

a. C lasses 4

b. O bjects 5

c. M ethods 6

d. Variables 7

(1) Class Variables 7

(2) Instance Variables 7

e. Private, Public, and Subtype Visibility 8

2. Properties of Object-Oriented Languages 9

a. Reusability 9

(1) Instantiation 9

iv

(2) Inheritance 10

(3) Polymorphism 10

(4) Genericity 11

b. Extensibility 12

3. Object-Oriented Languages 12

a. Classic-Ada 13

b. C ++ 14

c. Sm alltalk 15

d. A ctor 17

B. CONCURRENT PROGRAMMING 18

1. Conventional Concurrency 18

a. M essage Passing 19

b. Shared Variables 20

2. Concurrency in Object-Oriented Programming 20

C. DISTRIBUTED PROGRAMMING 21

1. Conventional Distributed Systems 21

2. Distributed Object-Oriented Programming 23

III. STUDYING VARIABLES IN OBJECT-ORIENTED SYSTEMS 24

A. SEQUENTIAL EXECUTION 26

1. Classes Without Inheritance Relation 26

a. Class Variable 28

v

b. Instance Variables 30

2. Classes With Inheritance Relation 32

a. Class Variables 32

b. Instance Variables 34

3. Sequential Execution Summary 36

B. CONCURRENT EXECUTION 37

1. Concurrency In A Uniprocessor Environment 38

a. Class Variable 38

b. Instance Variable 40

2. Concurrency in a Multiprocessor Environment 41

3. OOP In A Parallel System 41

a. Transputer 43

(1) Communication 43

(2) M em ory 43

b. Two Objects, Each On Separate Transputers 43

4. Concurrent Execution Summary 46

IV. METHOD VARIABLES 47

A. METHOD VARIABLES 49

1. Method Instance Variables 50

2. Method Class Variables 51

B. SEQUENTIAL EXECUTION 54

vi

1. Method Instance Variables 54

2. Method Class Variables 59

C. CONCURRENT EXECUTION 62

1. Concurrency In a Uniprocessor Environment 62

a. Method Instance Variables 62

b. Method Class Variables 64

2. Concurrency In a Distributed Environment 65

V. CONCLUSIONS AND RECOMMENDATIONS 66

A. SUMMARY AND CONCLUSIONS 66

B. RECOMMENDATIONS FOR FUTURE RESEARCH 67

APPENDIX A - SEQUENTIAL EXECUTION WITHOUT INHERITANCE . 68

A. CLASS VARIABLE 68

1. Alpha-specCV.ca 68

2. Alpha-bodyCV.ca 69

3. ProgramCVone.ca 70

4. Program _CVone.script 71

5. ProgramCVtwo.ca 72

6. Program CVtwo.script 73

B. INSTANCE VARIABLE 74

1. Alpha specIV.ca 74

vii

2. AlphaabodyIV.ca 75

3. ProgramIV.ca 76

4. Program _IV-script 78

APPENDIX B - SEQUENTIAL EXECUTION WITH INHERITANCE 80

A. CLASS VARIABLE 80

1. Alphaspec._CV.ca 80

2. AlphabodyCV.ca 81

3. Beta-specCV.ca 82

4. Beta.bodyCV.ca 83

5. ProgramCVinher.ca 84

6. Program _CVinher.script 87

B. INSTANCE VARIABLE 89

1. Alpha specIV.ca 89

2. AlphajbodyIV.ca 90

3. Beta spec_IV.ca 91

4. Betabody IV.ca 92

5. ProgramIV inher.ca 93

6. Program IV inher.script 95

APPENDIX C - CONCURRENCY ON A UNIPROCESSOR 97

A. CLASS VARIABLE 97

viii

1. Alpha-specCV.ca 97

2. Alpha-bodyCV.ca 98

3. ProgramCV_conc.ca 99

4. Program CV conc-%cript 101

B. INSTANCE VARIABLE 102

1. Alpha-spec_.W .ca 102

2. Alpha.bodyWV.ca 103

3. ProgramIV conc.ca 104

4. Program IV conc.script 106

APPENDIX D - CONCURRENCY ON A MULTIPROCESSOR 107

A. TWO TRANSPUTERS WITH CLASS VARIABLE 107

1. Alpha-specCV.ca 107

2. Alpha-bodyCV.ca 108

3. ProgramCVtrans.ca 109

4. Alphaone.ada 110

5. Alphatwo.ada 111

6. ProgramCVtrans.script 113

APPENDIX E - METHOD INSTANCE VARIABLES 114

A. CLASSES WITHOUT INHERITANCE RELATION 114

1. Alpha-specmiv.ca 114

ix

2. Alphaibodyjxniv.ca 115

3. Program -miv.ca 117

4. Program-miv.script 119

B. CLASSES WITH INHERITANCE RELATION...............121

1. Beta-spec-miv.ca................................ 121

2. Beta-body-miv.ca 122

3. Program miv-inher.ca.............................123

4. Program- miv-inher.script 126

APPENDIX F - METHOD CLASS VARIABLES 129

A. CLASSES WITHOUT INHERITANCE 129

1. Alpha-.spec-mcv.ca 129

2. Alphajbody..mcv.ca 130

3. Program-mcv.ca 132

4. Program-mcv.script 134

B. CLASSES WITH INHERITANCE RELATION...............136

1. Beta._.spec..mcv-ca 136

2. Beta-body..mcv.ca 137

3. Program-mcv-inher.ca 138

4. Program ,mcv-inher.script..........................141

APPENDIX G - CONCURRENCY WITH METHOD VARIABLES 144

x

A. METHOD CLASS VARIABLE 144

1. Alpha-specC V.ca 144

2. Alpha bodyCV.ca 145
3. ProgramSmcv conc.ca 147

4. Program -mcv conc.script 149

B. METHOD INSTANCE VARIABLE 151

1. Alpha-spec miv.ca 151

2. Alpha body-miv.ca 152

3. Program miv conc.ca 154

4. Program -miv-conc.script 156

LIST OF REFERENCES 158

INITIAL DISTRIBUTION LIST 162

xi

LIST OF FIGURES

Figure 1 Class Alpha and Beta Definitions 25

Figure 2 Representation of the Classes aAid their Instances 27

Figure 3 Class Alpha Definition 28

Figure 4 Class Alpha Definition 31

Figure 5 Class Alpha and Beta Definitions 32

Figure 6 Class Alpha and Beta Definitions 34

Figure 7 Distributed and Shared Resource Systems 42

Figure 8 The Class "efinition with Method Variables 50

Figure 9 Method Instance Variable Accessibility in Class Alpha 52

Figure 10 Method Class Variable Accessibility in Class Alpha 53

Figure 11 Class Alpha with Method Instance Variables 55

Figure 12 The Classes Definition 57

Figure 13 Class Alpha with Method Class Variables 59

Figure 14 Classes Alpha and Beta Definition 61

xii

ACKNOWLEDGEMENTS

Completing this thesis, I would like to express my sincere appreciation and

gratitude to my advisor, Dr. Michael L. Nelson, for his assistance and guidance.

I dedicate this thesis to my wife, Mimi, for her great help, support, and

encouragement during all this period, including late nights and weekends that

were spent in writing this thesis. Finally a special thanks is due to the Hellenic

Navy for giving me this opportunity to study at the Naval Postgraduate School.

xiii

I. INTRODUCTION

A. BACKGROUND

Object-oriented programming (OOP) is a new approach to programming.

Many people believe that OOP is the future of programming languages and also

that it can improve the development of software. The main reason for this

evolution of programming languages is the necessity of the human mind to be

able to express ideas, and also to be able to more easily model real world

activities with a computer program. Ever since the first computer languages

appeared, the human mind has always tried to find ways to express thoughts

and ideas more easily. This is the main reason why man builds newer high level

languages every day which are closer to his way of thinking.

Thus OOP is rapidly becoming a popular approach to the construction of

complex software systems. Benefits of object-orientation include support for

modular design, code sharing, reuse, and extensibility.

The main purpose of this research is to observe different types of variables

in object-oriented programming in different kinds of environments. The initial

starting point for this research stems from the problems encountered during the

development of an object-oriented model of the software controller of the Naval

Postgraduate School (NPS) Autonomous Underwater Vehicle (AUV) [BN91]. The

1

C. ORGANIZATION

The remainder of this thesis is divided into four chapters. Chapter II

introdu.es the basic concepts of object-oriented programming, concurrency, and

distributed systems. Chapter I investigates variables in an object-oriented

programming environment with a special attention to sharing data. In Chapter

IV, various solutions are suggested. Chapter V contains the conclusions and

recommendations for future research. The computer code developed during the

course of this thesis is contained in Appendices A through G.

3

II. BACKGROUND

In this chapter we survey the literature on object-oriented concepts,

concurrency, and distributed systems.

A. OBJECT-ORIENTED CONCEPTS

1. Basic Concepts

In this section we give a brief description of the basic concepts of object-

oriented programming. Since this area is still relatively young, there are no

standard definitions yet within the object-oriented community [Nel90a]. However

the following basic concepts are found in most object-oriented languages.

a. Classes

"Objects which share the same behavior are said to belong to the

same class" ([WWW90]: pp.22). A class defines a group of similar objects with the

same structure and behavior. Any object generated from a given class has the

same set of information (the structure) and abilities (the behaviors). The structure

of a class is represented by the variables, and the behavior is represented by the

methods existing for each class.

A brief (but good) description of a class is given in the following

statement:

4

"Class is indeed the technical term that will be applied in object-

oriented languages to describe such sets of data structures characterized by

common properties." ([Mey88: pp.52)

We can picture a class as a factory that produces products with the

same main properties, with no limits to the number of products. We cannot have

two objects with different structures within the same class. For example, consider

a class car; it can be thought of as vehicle factory that produces a certain car

model. All objects of the class have the same structure.

Classes can be related to one another by inheritance; we say that

a subclass inherits the structure and behaviors (i.e., the variables and methods)

of its superclass. The subclass may, in turn, serve as the superclass for another

subclass. This leads to a hierarchy of classes in which we can talk about ancestor

and descendant classes. This will be discussed further in Section 2.

b. Objects

An object is an instance of a class. Objects that belong to the same

class have common structures and behaviors. Actually, we can say that the object

is the first and main element in object-oriented programming because when we

start thinking about how to define the class we first try to specify and categorize

each needed object. Several objects from the same class can exist at the same

time, and all of them have the same main properties. As we will see later, these

are the variables and methods.

5

Referring to our previous example, the class car can be used to

produce several instances, each with the same basic structure and set of

behaviors. Our-car, a particular car with our options (color, whether it is

automatic, etc.), is an instance of the class car. Since an object is generated from

a class, the variables and the methods of the class exist for every object. That is,

ourcar will have the same set of variables and methods that every other instance

of the class car has.

c. Methods

The operations or procedures that an object knows how to perform

are called methods. A method is similar to a function definition or procedure call

in conventional languages. A method deals only with objects of the class within

which it is contained (defined), and can be activated only by sending a message

to the object. A message consists of the name of a method along with any

required arguments including the name of the object and any parameters. Each

time an object receives a message it performs the requested operation by

executing the appropriate method.

Another definition of method is that it is the step by step algorithm

executed in response to the received message where the name in the message

matches the name of the method [WWW90]. Sending a message is more general

than calling a function because different objects can respond to the same message

in different ways; as we will see later, this is known as polymorphism.

6

In our car example, we might have the method start-engine

defined for the car class. We could then send this message to ourcar in order

to start its engine.

Methods can be categorized as either class methods or instance

methods. Messages sent to a class cause a class method to be executed while

messages sent to objects cause an instance method to be executed.

d. Variables

There are two kinds of variables in an object-oriented language:

class variables and instance variables.

(1) Class Variables. "A class variable is shared both in name and

value by all instances of a class" ([Nel9lal: pp.4). We can consider these variables

to be global for any object of that particular class.

For example, in our car class we could have the class variable

numberofwheels which is the same for every instance (object) of this class.

This variable is the same for every object. Therefore, if it were to change, all

objects immediately change as they all share access to this same class variable.

(2) Instance Variables. "An instance variable is shared in name

only, not in value, by all instances of a class" ([Nel9la]: pp.4). Whereas class

variables can be thought of as global to all the instances of a class, instance

variables can be considered as the private data of each object.

7

In our example car class we could have the instance variable

serialnumber. All car objects will have this variable, but the value for each

object is different.

e. Private, Public, and Subtype Visibility

Both variables and methods can be divided into three categories

which define their visibility to subclasses and end-users. These three categories

are as follows:

" Public

" Private

" Subtype visible

When a variable or method is declared to be public we mean that

anyone has access to it from inside or outside the class. A public variable may

have the additional attributes of read-only or writable outside the owner class

(i.e., anyone may be able to read it, but they may not be able to change it). When

we declare a method to be public we also mean that it is a part of the published

or public interface. We must point out here that since public variables and

methods can be accessed by anyone, it can be very costly to change them [RB91].

The private property is.the opposite of public. When we declare

data or methods to be private we mean that they can only be reached by methods

declared within that class. Private methods and variables are internal to a class.

8

Therefore we can modify them or even delete them more easily as this will only

impact other methods of the same class.

Subtype-visible is something between these two extremes.

Subtype-visible variables or methods can be reached only by methods declared

inside the same class or its descendant classes. End-users, however, cannot

directly access these variables or methods.

2. Properties of Object-Oriented Languages

a. Reusability

"Reusability is the ability of a system to be reused, in whole or in

part in order to construct a new system" ([Mic88]: pp.13). Reusability is one of

the major advantages of object-oriented languages because it reduces the cost of

designing, coding, and testing.

(1) Instantiation. This term is used in object-oriented languages

when we generate an instance (object) of a class. When we say instatiate we

mean that we create a new object of a class. Every time we instatiate an object

we are reusing the class definition. That is, each time that we instatiate an object

a class serves as a template which provides the variables and methods.

In object-oriented programming we can have statically or

dynamically instantiated objects. Statically instantiated objects must be

declared/instantiated at compile time, whereas dynamically instantiated objects

may be instantiated at run time.

9

(2) Inheritance. "Inheritance can be defined simply as a code

sharing mechanism" ([Nel9la]: pp.5). An inherited class may be defined as an

extension or restriction of another class [Mey88]. In other words, inheritance

allows us to reuse the definition of a previous class in the creation of a new one.

This new class is called a subclass of the first one, which is called the superclass.

In the case that we can inherit from only a single class we have a simple or single

inheritance. If, on the other hand, we can inherit from many classes we have

multiple inheritance (MI).

What about inherited class variables in the subclass? There

are two different aspects in the way that class variables can be implemented in

inheritance. The first notion implements the class variable as a global variable for

all classes related by inheritance, which implies the ability to change the value

from any class. That is, a single class variable is shared by all the classes related

by inheritance. Alternatively, changing a value in any class does not modify the

value of the other classes related by inheritance. That is, the class variable is in

effect duplicated for each new subclass. [Nel9Oa]

(3) Polymorphism. "Polymorphism (sometimes called operator

overloading or function overloading) can be defined as allowing different data

types (classes) to have methods (routines) with the same name which may be

implemented differently" ([Nel9Oa]: pp.4). The ability of different objects to

respond to the same message is called as polymorphism. Even when the same

10

message is sent from the same place in code, it can invoke different methods,

depending on the object it is sent to [SB86].

There are two forms of polymorphism: simple polymorphism

and multiple polymorphism [Nel90a, Mic88]. With simple polymorphism, each

class may have its own implementation of an operation. With multiple

polymorphism, a single class may have several operations with the same name.

(4) Genericity. "Genericity is the ability to parameterize modules.

The need for this facility is particularly clear for classes representing general data

structures: arrays, lists, trees, matrices etc" ([Mey88]: pp.104). One common form

of genericity is the abstract data type (ADT). An ADT is a data structure with a

set of associated operators in which the implementation details are hidden,

allowing the user to reference the ADT with implementation-independent code.

This allows the physical implementation of the ADT to be changed without

affecting the user-written code. Since the class definition is a form of an ADT, the

class itself represents one form of genericity. [Nel9la]

The generic module is a module pattern and is not directly

usable. Instances of the generic module are obtained by providing real types for

each of the generic parameters. It is a technique that is used to avoid some of the

requirements of static type checking.

11

b. Extensibility

Extensibility is the facility in a software system to change or

modify anything we need in accordance with our requirements in order to

produce a new class from an existing one. This is achieved through the use of

inheritance in object-oriented languages.

Extensibility is easy when dealing with small and simple programs,

but is more difficult in larger programs. Thus, the problem of extensibility is a

problem of scale because as the programs grow larger, the problem of adaptation

also becomes harder [Mey88].

There are two principles essential to improve extensibility in the

designing of classes [Mey88]:

" Design simplicity: it is easier to adapt changes when we have a simple
structure in a class rather than a complex one.

" Decentralization: we have more possibilities that the changes will be in one
class and will not affect a chain reaction of changes over the whole system.

3. Object-Oriented Languages

Object-oriented languages can be categorized into two families. The

first family contains those languages with the object-oriented features added to

an existing language, and we refer to this family as bolted-on languages. The

second family contains those languages which are designed and constructed

around the principles of object-oriented programming, and we refer to this family

as built-in languages.[Nel90a]

12

a. Classic-Ada

Classic-Ada [Sof89, NM92] is an object-oriented preprocessor for

Ada [Boo87]. It is a preprocessor because it converts the programs written in the

Classic-Ada language into standard Ada, and the resulting programs are then

compiled with a standard Ada compiler. It adds to Ada the concepts and features

of an object-oriented language, including methods, objects, dasses, and

inheritance (thus, Classic-Ada is a bolted-on object-oriented language).

Class definitions are divided into specifications and bodies, similar

to package specifications and bodies in Ada. The terminology and reserved

words used in Classic-Ada are very similar to the basic concepts of other object-

oriented languages. Classic-Ada supports single inheritance but does not support

multiple inheritance. Every class needs at least one method, the method create for

the creation of objects from this class; this method is a class method. If we want

to have a method by which objects of classes are reclaimed we need a second

method delete, which is an instance method. These are the only methods that we

cannot inherit from an ancestor class; they must be declared anew for each new

class.

Methods and variables are classified by the reserved word instance

if they are instance methods or instance variables. If they are class methods or

13

variables we do not put any reserved word before them as the default is a class

method or variable1.

Classic-Ada does not support the concepts of private, public, and

subtype visible. All variables are by default subtype-visible, and all methods are

public.

To accomplisla dynamic binding Classic-Ada uses the reserved

word send, which is a fairly colamon approach for many bolted-on object-oriented

languages [Nivlr2].

Since Classic-Ada is an extension of the Ada Language, which does

support concurre7lv-y, a concurrent Classic-Ada program is therefore possible

[Nel9lb].

b. C++

C++ [WP88] is an extension of the popular C language, adding

special features for object-oriented programming. Thus, C++ is a bolted-on

language. C++ was originally a preprocessor for the C language, but C++

compilers are now available.

C++ supports encapsulation, combining data abstraction with

methods to manipulate data into a class-type object. The reserved words class,

union, and struct are used for the declaration of a class. The major difference

'The Classic User's Manual [Sof89] does not specifically mention class
variables and class methods. This 'feature' was discovered through
experimentation.

14

between them is the accessibility of the members, because many versions of C++

language support the concepts of public, private, and protected (note that in C++

terminology, the term protected is used rather than subtype-visible). All versions

of C++ support single inheritance, and multiple inheritance is now supported in

some versions.

Polymorphism in C++ is accomplished by placing the reserved

word virtual before the functions (methods). Virtual functions allow you to use

many versions of the same function throughout a class hierarchy, with the

particular version to be executed being determined at run time.

Messages are sent to objects using a mechanism similar to that used

to invoke a function (object-name.function _name(argument)). Since C is a

pointer language we can also send a message with a pointer if we have a pointer

that points to an object (objectpointer -> function-name (argument)).

C++ provides a special type of member function with the reserved

word constructor. A constructor specifies how a new object of a class type will be

created. The deallocation of the memory is achieved with the method destructor.

C++ does not include any constructs for handling concurrency.

c. Smalltalk

One of the first true object-oriented languages was Smalltalk

[Seb89]. According to our previously discussed classification of object-oriented

languages, Smalltalk is a built-in language.

15

Smalltalk is an interpretive language which uses an intermediate

compiler. As an interpretive language it provides rapid testing of incremental

changes to the image. Many problems can be solved by using or modifying

existing classes and methods.

All programming in Smalltalk is accomplished by sending

messages to objects. It supports three kinds of messages: unary, binary, and

keyword. Smalltalk supports both class and instance methods.

Smalltalk variables come in two varieties. The first is private

which means they are local to an object, and the second is shared which means

they are visible outside the object in which they are declared. Determination in

the program is achieved by using lower or uppercase letters. Private variables

must begin with lowercase letters, while shared variables begin with uppercase

letters.

Inheritance in Smalltalk is also supported. However, only a single

hierarchy is supported, and all classes must be descendants of the root class

object. We have the ability to rename, modify, or add any inherited variable or

method.

Smalltalk includes a Fork' construct, so we can run processes

concurrently. But we must point out that they are essentially run sequentially on

2Fork, is a control structure for indicating parallelism. It creates two
concurrent processes, one at label and one at statement following the Fork
statement. [Dei9O]

16

a uniprocessor. The reason for this is that each process runs until finished or

stopped for a reason and then the next process starts to run, etc. A Yield

statement which is also provided by Smalltalk allows processes to yield to the

processor at any time, but true non-determinism is not possible in standard

Smalltalk. [SN90]

d. Actor

Actor3 is very similar to Smalltalk, and Actor is also a built-in

object-oriented language. Actor is an interpretive language which provides rapid

testing of incremental changes to the image. Many applications can be built by

using or modifying existing classes and methods.

Inheritance is also supported in Actor. Like Smalltalk, only single

inheritance is supported, and all classes must be descendants of the root class

object. We have the ability to rename, modify, or add any inherited variable or

method.

Actor supports both class and instance methods and also class and

instance variables. Class variables must start with the sign $' and then follow

with the first letter being capitalized, instance variables must not capitalize the

first letter and there is no special character in front. Although Actor has global

variables that are similar to those in traditional languages, they are accessible

'It should be realized that we are discussing the language Actor which is
registered trademark of the Whitewater Group, Inc. (a registered servicemark)
[Act9O]. This language is not associated with the Actor model [Agh88].

17

from anywhere in the program. They are used most often during the testing of

the program.

Actor does not include any constructs for handling concurrency.

B. CONCURRENT PROGRAMMING

1. Conventional Concurrency

Concurrent execution is conventionally viewed in terms of autonomous

sequential processes executing in parallel [BLW87]. In concurrency we usually

deal with processes which may run at the same time. These processes may run

separately from one another, which means that there is no exchange of

information between the processes. Each one starts and stops processing without

waiting on the others for any reason.

It is also possible that we need some level of cooperation between the

processes. This case is called asynchronous, which means that the processes may

require occasional synchronization and cooperation [Dei01.

Thus the correct behavior of a concurrent program is dependent upon

the necessary synchronization and communication between its processes.

Synchronization is concerned with the action(s) that have to occur in one process

before an action of another process. Communication deals with the information

passing between processes.

The problems we need to solve in a concurrent programming

environment include the following:

18

a. Message Passing

Message passing is simply a way of passing information from one

process to another. Message passing between two processes involves four issues

[BLW87]. These four issues are:

* process naming

" synchronization

" message structure

" failure on communication

Process naming deals with the address that a message is sent to.

We can directly address the process that is going to receive a message.

Alternatively, we can just name the channel or the communication port where the

message is to be sent, and it is assumed that the receiver will eventually receive

the message. The first case has the advantage of simplicity, and the disadvantage

that we cannot change the receiver of the message at run-time. The second case

has the advantages that we can change the message destination at the run-time,

or we can have an anonymous process as a receiver.

Synchronization is the need for the mutual acknowledgement

between the sender and receiver of a message. When the sender continues

executing immediately after sending the message we have asynchronous message

passing. When the sender waits (i.e., is blocked) until the receiver accepts the

message we have synchronous message passing.

19

Virtually any data structure can be transmitted within a message,

possibly subject to size limitations imposed by the system.

The necessity of handling a communication failure is more of a

necessity in networks and distributing systems.

b. Shared Variables

Shared variables in concurrent programs are the case in which we

have data shared between different processes. When one process accesses the

shared variable, we must keep any other process wishing to do the same from

doing so until the first process finishes access to the shared variable. We say

that each process requires exclusive access, which is referred to as mutual

exclusion. When a process is accessing shared data it is said to be in a critical

section, and the shared data is often called critical data. [Dei90]

2. Concurrency in Object-Oriented Programming

In the real world many things exist and do things concurrently. Object-

oriented programming systems show great potential for use in designing and

building concurrent systems as many objects can exist and do things

concurrently. [Ne90c]

In concurrent object-oriented programming there are many ways that

we can have concurrency. Different objects could execute various methods at the

Access to shared variables may also be modeled after the Readers and
Writers problem [Dei901. This approach allows any number of readers (with no
active writer) or a single writer (with no active readers) at any point in time.

20

same time, different methods can be executing in the same object at the same

time, or a single object (instance) could be executing a single method which does

several things concurrently. Of course, these three possibilities can be combined -

that is, several objects, each executing several methods, each of which does

several things concurrently. [Nel90c]

Unfortunately, we still have most of the same problems that we have

with any concurrent language when we move into the object-oriented

environment. The major problem is in controlling the concurrent activities during

program execution.

Concurrency can be achieved in a computer system which has only a

single processor (i.e., a uniprocessor)s or in a computer system which contains

two or more processors (i.e., a multiprocessor). In both cases we have to deal

with the messages that objects send to one another to achieve successful

execution.

C. DISTRIBUTED PROGRAMMING

1. Conventional Distributed Systems

A distributed computer system contains multiple autonomous

processing elements cooperating for a common purpose or to achieve a common

goal. Distributed systems can be divided into two main categories [BT88]:

s Obviously, we can only have simulated concurrency on a uniprocessor as
only one thing may execute at a time.

21

" tightly coupled: systems that have a common memory;

* loosely coupled: systems that do not have a common memory.

Note that communication between processes in a loosely coupled

system must be via some form of message passing. Thus, these two categories

can also be thought of as those which communicate through shared data, and

those which communication via message passing.

One efficient implementation for shared data in distributed system is

the use of replication [BT88]. Another possibility is the use of the same

techniques that are used in concurrent systems, such as mutual exclusion,

monitoring, etc.

The most important differences between shared data and message

passing are as follows [BT881-

1. The process sending a message must know some form of identity of the
receiver.

2. When making a new assignment there is a delay in sending the message
from one process to another; with shared data the assignment has an
immediate effect.

3. A message sent from one process to another is more secure than shared
data which is reachable by anyone.

4. To exchange messages between processes we may need synchronization.
However to access shared data we definitely need synchronization between
the processes (i.e., this is a classical mutual exclusion problem).

5. When passing a message it maybe difficult to pass a complex data
structure; with shared data this difficulty does not exist.

22

2. Distributed Object-Oriented Programming

The main goal in distributed object-oriented programming systems is

to establish a distributed object manager that allows several different systems to

share objects [BT88].

The development of distributed systems has been partly motivated by

the desire to extend the limited set of sharable resources of a particular computer

system to a large, possibly unlimited, set of network resources. Resource sharing

poses the problems of naming, protection, and consistency.

There are currently several development projects concentrating on high

performance system kernels for distributed systems. They all support a client-

server approach, in which the servers can manage data on behalf of external

clients. An alternative approach is to have direct invocation of (possibly remote)

objects. Each object is executed in its own virtual address space. [Hor90]

23

III. STUDYING VARIABLES IN OBJECT-ORIENTED SYSTEMS

In this chapter we analyze and define the sharing of variables in an object-

oriented environment. As discussed in Chapter II, a class consists of variables

which are defined in the class definition. The values of these variables have one

of the following properties: they are either shared between the instances (objects)

of a class or they are independent for each instance (object) of a class; that is, they

are either class variables or instance variables.

Before observing the variables and sharing of data in an object-oriented

system, it is first necessary to define the execution environment. We begin with

a brief description of the different terms to be used. Unfortunately, these terms

are often used in a rather confusing manner within the computer science

community - the same term may be used differently or different terms may be

used the same [Nel90c].

A process is the smallest part of a program which may be control'ed as a

separate entity. A concurrent process is simply one which may be executed at the

same time as other concurrent processes. Multiprocessing is the ability to give the

appearance of executing two or more processes concurrently, regardless of the

number of processors involved. A parallel system is one which supports true

multiprocessing (i.e., two or more processors are used).

24

A uniprocessor is a computer system which has only a single processor. A

multiprocessor is one which contains two or more processors.

In this chapter we discuss the various types of execution in an object-

oriented programming environment and the results obtained with different types

of variables. We will classify the execution type as either sequential or

concurrent.

Figure 1' shows how class definitions can be presented in a language-

independent manner. In this example, the class Alpha has one class variable (cv),

one instance variable (iv), and three methods (Method-X, MethodY, and

MethodZ). The class Beta defines no new variables or methods, but inherits all

of the variables and methods defined for the class Alpha.

Class Alpha
Superclass: none
Class variable: cv
Instance variable: iv
Methods: Method_X

Method_Y
Method_Z

Class Beta
Superclass: Alpha
Class variable: none
Instance variable: none
Methods: none

Figure 1 Class Alpha and Beta Definitions

'Mhe language -independent class definitions are modeled after those found
in [Nel9Oa].

25

We can define several instances (objects) for each class. For example,

objectAl, objectA2, and objectA3, for class Alpha; and objectB1, objectB2, and

objectB3 for class Beta.

Figure 2 gives one representation of the classes and their instances. The

classes are presented in this way as it is similar to block scoping diagrams used

for conventional language systems, and it makes the concept of sharing data in

an object-oriented environment more understandable. Note, however, that this

diagram does not show that a single class variable (cv) is shared by both Alpha

and Beta.

Several Classic-Ada programs have been generated to study various aspects

of variables. Various tests are conducted in both sequential and concurrent

modes of execution.

A. SEQUENTIAL EXECUTION

The term sequential execution is used in those cases where processes are

executed sequentially. Although sequential execution is the simplest case, the

effects of inheritance cannot be omitted. Thus, both classes with inheritance and

classes without inheritance are studied.

1. Classes Without Inheritance Relation

Classes without inheritance are simply ones which are not descended

from other classes. Thus, we will only consider a class Alpha.

26

Class Alpha

Cv

Object Al Object A2 Object A3

iv iv iv

Mebd-X Febd-X Mto-

Ed l IdIZ :dClaws Beta

Cv

ObjectB I OjectB2 Object B3

iv iv iv

MethodY [Method Y

Figure 2 Representation of the Classes and their Instances

27

a. Class Variable

As discussed in Chapter II, a class variable is a variable shared by

name and value in both all instances (objects) of the class. To illustrate the use of

class variables in a sequential environment, we will define the class Alpha as

presented in Figure 3.

Class Alpha
Superclass: none
Class variable: cvi
Instance variable: none
Methods: Setclassvariable

Getclassvariable
Create
Delete

Figure 3 Class Alpha Definition

The method Set class variable sets the value of the class variable

(cvl), while the Getclassvariable returns its current value. The Create and

Delete methods are used to create and delete instances (objects) of the class.

The files giving the specification and implementation of the class

Alpha are AlphaspecCV.ca and Alpha_bodyCV.ca.7 The main program, which

creates instances of the class Alpha and manipulates them, is in the file

7 In Classic-Ada the declaration of a class requires two files. The first is the
specification file which defines the name of the class and the names and types of
its methods. The second is the body of the class where we specify the
implementation of the methods and also define the variables and their types.

28

programCV_ one.ca and its output is in the file programCV_one-script. All files

discussed in this section are contained in Appendix A, Section A.

This experiment was used to check the value of the class variable

for different instances (objects) in the same class. This was done to ensure that

the class variable was indeed shared in both name and value between different

instances of a class. We create several instances (objects) of the class Alpha and

then apply the methods in the following order.

First, we declare the object and create it as an instance (object) of

class Alpha using the Create method.

Second, we invoke the Getclassvariable method to get the current

value of the class variable for the instance. As can be seen in the output of the

program, the first time that we call the Getclassvariable method for the first

object the value is null since no value has been defined yet. For subsequent

instances (objects), the value is that given to the previously defined instance

(object).

Third, we invoke the Setclassvariable to set the class variable to

a specific value. For our program this can be any legal character.

Fourth, we again invoke the Getclassvariable to get the current

value of the class variable at this instance. As can be seen in the output, the

value of the class variable is equal to the character given in the Setclass_variable

method, as expected.

Finally, we invoke the Delete method to delete the instance.

29

Looking at the output, we can see that Classic-Ada implements

class variables as expected - they are shared in both name and value by all

instances of a class. Note that we delete each instance before creating the next.

These deletions have no effect on the class variable as it exists within the class

Alpha. Its value is maintained even after the instance that last set the value is

deleted.

As a further test, we run another program (program_. CV_two.ca)

with all the Delete messages for the instances of the class at the end of the

program. The output of this new main procedure is in the file programCV_

two.script. In this way we keep the instances of the class Alpha 'alive' until the

end of the main procedure. As expected, however, this coexistence of all

instances does not change the previous results. It also shows that all instances see

the latest value of the class variable.

b. Instance Variables

An instance variable is shared in name only by all instances of a

class, as discussed in the last chapter. We now define the class Alpha as shown

in Figure 4 to test this feature. The files with the specification and

implementation of class Alpha are the AlphaspecIV.ca and Alpha.body jV.ca. All

the files used in this section are included in Appendix A, Section B.

The main program file is programIV.ca. Our goal here is to

observe the value responses of an instance variable through different instances of

a class. The output of the main procedure of the program is presented in the file

30

Class Alpha
Superclass: none
Class variable: iv1
Instance variable: none
Methods: Setinstance_variable

Get_instance_variable
Create
Delete

Figure 4 Class Alpha Definition

programIV.script. In this program we create several instances of class Alpha and

apply methods in the following order.

First, we create an object and then invoke the Getinstancevariable

method to get the current value of the instance variable for this instance. As

excepted, this returns a null value as objects are created without any initial or

default value for this variable.

Next, we invoke the SeLinstancevariable to set the instance

variable with a value. Finally, we invoke the Getinstancevariable method to get

the current value of the instance variable, which is the value set by the previous

Set_ instancevariable method, as expected.

As can be seen in the output of this program, the values of the

instance variable of each instance are independent of all other instances of that

class. Indeed, instance variables are shared in name but not in value by all the

objects of a class.

31

2. Classes With Inheritance Relation

Remembering that inheritance is a sharing mechanism, we expect to have

some sharing of data between classes. Since we have code reuse in inheritance,

the reuse of a class implies that we share the names and the types of the existing

variables, and the names and parameters of the existing methods.

a. Class Variables

We will now use the classes Alpha and Beta as shown in Figure 5.

Notice that in Classic-Ada it is necessary to define the methods Create and Delete

for each class, even though it is appears that the methods should have been

inherited from superclass [NM921. The class Beta inherits all other variables and

methods defined in the class Alpha.

Class Alpha
Superclass: none
Class variable: cvl
Methods: Setclassvariable

Getclassvariable
Create
Delete

Class Beta
Superclass: Alpha
Class variable: none
Instance variable: none
Methods: Create

Delete

Figure 5 Class Alpha and Beta Definitions

32

The files of class Alpha and Beta are Alphaspe*_CVca and

Alpha-bodyCV.ca, and the Beta.specCV ca and Bea_bodyCVca respectively. All

files used in this section are contained in Appendix B, Section A.

In this experiment we want to observe the response of class

variable thought the inheritance mechanism between different objects.The main

program is programCVinher.ca, and its output is contained in

programCV inher.script. Objects are created and manipulated in the following

order:

" First instance of class Alpha (object Al)

" First instance of class Beta (object B1)

" Second instance of class Alpha (object A2)

" Second instance of class Beta (object B2)

We then invoke messages in the following order.

First, we declare and create the objects.

Second, we invoke the Getclassvariable to get its current value.

As expected, the first time that we call the Get_classvariable method on the first

object the current value of class variable is null since we do not define any default

or initial value. After that, we get the value set by the previous object, also as

expected.

Third, we invoke the Set_classvariable to set the class variable to

a new value.

33

And finally, we again invoke the Getclass_variable method. As

expected, the value is that which was set in the previous Set_class_variable

method.

Notice that the value set for each instance is reflected as the 'initial'

value for the next object, regardless of class membership (i.e., Alpha or Beta).

Thus, the class variable is shared in both name and value between all instances

of all classes related by inheritance.

b. Instance Variables

For this experiment we use the classes Alpha and Beta as shown

in Figure 6.

Class Alpha
Superclass: none
Class variable: iv1
Methods: Setinstance variable

Getinstancevariable
Create
Delete

Class Beta
Superclass: Alpha
Class variable: none
Instance variable: none
Methods: Create

Delete

Figure 6 Class Alpha and Beta Definitions

34

The files with the specification and implementation of class Alpha

and Beta are the Alpha_spec_IVca and AlphabodyV.ca and BetaspecJV.ca and

BetaodyIV.ca, respectively. The main program is the programIV inher.ca, and

its output is in the file program IVinherscript. All files for this section are in

Appendix B, Section B. Objects are created and manipulated in the following

order:

" First instance of class Alpha (object Al)

" First instance of class Beta (object B1)

" Second instance of class Alpha (object A2)

" Second instance of class Beta (object B2)

Methods are invoked on the objects in the following order:

First, objects are declared and created.

Second, we invoke the Getinstancevariable method to get the

initial value of the instance variable for this instance. As can be seen in the

output of this program, this value is null as we did not define any initial or

default value for the instance variable.

Third, we invoke the Setinstancevariable method to set the

instance variable with a given value. For our program this could be any legal

character.

35

Fourth, we invoke the Get-instance-variable method to get the

current value of the instance variable for this instance. As expected, the value

returned is that set by the previous Setinstance-variable method.

Finally, after following these four steps for each instance, we again

send each instance the message Getinstance-variable. As expected, each object

has maintained its own value for the instance variable.

3. Sequential Execution Summary

The class variable, as pointed in Chapter II, depends on how the object-

oriented language being used supports inheritance. One of the following

properties are supported:

" it is shared by all the classes related by inheritance.

" it is duplicated for each new subclass, so changing the value in one class
does not modify the other classes.

However, the class variable in each class is always a shared variable for

that particular class. This is as we observed in the previous experiments. This

means that every instance of the class has access to this variable, and nothing

outside the class can access it without using the appropriate method. Classic-

Ada, however, supports the first notion above as an inherited class variable is

shared by all instances of each class related by inheritance. It is not possible to

36

have any kind of shared variable between two classes if there is no inheritance

relation'.

Each instance of a class has its own private set of instance variables.

In other words, memory storage is allocated to maintain the internal

representation for each instance of a class. Thus, the instance variable is a shared

variable, but only within an object; more specifically, it is shared between the

methods of the object. The problem arises if we want shared data between only

some methods, but not between others. Once again consider Figure 2. For

example, what if we would like to have a variable that only MethodX in object

Al can access (i.e., MethodY and MethodZ cannot access it)? Alternatively,

how could we have a variable shared by MethodX and MethodY in an instance

(object) such as Al, but not by a MethodZ? This is not possible in any object-

oriented programming language that we know of. This is one concept that we

are investigating in this thesis. Our proposals will be discussed in Chapter IV.

B. CONCURRENT EXECUTION

With the term concurrent execution we mean the ability to have two or more

processes running at the same time; that is, some form of multiprocessing. This

could be a parallel system with several processors (i.e., a multiprocessor), or a

sIt is obvious that we can use some form of a global variable in the program,

but this is not acceptable since the majority of literature on the designing object-
oriented system software advises readers to avoid using this kind of variable.

37

uniprocessor with simulated multiprocessing (via some form of context

switching).

1. Concurrency In A Uniprocessor Environment

It should be realized that in this type of concurrency we do not have

any real concurrent execution, as everything is actually being executed

sequentially.

a. Class Variable

For this experiment we use the same class Alpha as previously

defined and shown in Figure 3. We want to observe the responses of the class

variable in a simulated concurrent environment.

The main program, which creates and manipulates instances of the

class Alpha, is in the file programCVconc.ca. Its output is in the file programCV

_conccript. All files used in this section are in Appendix C, Section A.

We have four tasks in the main program. Three are responsible for

creating and manipulating objects, and the fourth task is the main procedure

where we just print a simple message. To make sure that all the tasks are eligible

to start running at the same time we give the same priority to each of the task,

(pragma priority (1)). After creating an object, the three tasks apply methods in

the following order:

* Getclassvariable to get the current value of the class variable for the
object.

38

* Setclassvariable to set the class variable with a new value.

* Getclassvariable again to get the current value of the class variable for the
object.

The main task just prints the word "main" so that we can observe

when this task runs. We expect after the beginning of the main program that the

three tasks run in parallel with the main one. Note that before the main

procedure can end the other tasks in the system have to finish. The output of the

execution program indicates that the tasks executed in the following order.

" main procedure begins

" object A3 created and manipulated

" object A2 created and manipulated

* object Al created and manipulated

* main procedure ends

The reason that the system chose to run the task manipulating

object A3 before the other tasks is purely arbitrary as the same priority was

specified for all. The results also indicate that the tasks did finish before the main

procedure ended.

As expected, the value of class variable for each instance of for

each task is reflected as the 'initial' value for the next object, regardless of which

task created and manipulated the object. Thus, the class variable is shared

between all objects regardless of which task is involved.

39

Notice that in the main program that we put the invocation of the

methods delete at the end of the main procedure (task). This is because we knew

the running order of the tasks (i.e., that the main task finishes after all others)

from previous experiments with all tasks with the same priority. Any statement

after the 'main' runs after the finishing of the other tasks.

b. Instance Variable

For this experiment we again use the class Alpha as shown in

Figure 4. We want to illustrate the use of instance variables in a simulated

concurrent environment.

The main program is the program IV conc.ca, and its output is in

the file program IV conc.script. All the files for this section are in Appendix C,

Section B. We have the same structure as the previous main program

(programCV_conc.ca) except that we now have an instance variable rather than

a class variable.

The final output was as expected (in accordance with the class

variable results), with the tasks executing in following order:

" main procedure begins

" object A3 created and manipulated

" object A2 created and manipulated

* object Al created and manipulated

" main procedure ends

40

As expected, the value of instance variable is autonomous and

individualistic for each object; that is, it was not shared between the objects of the

class. "tus, an instance variable in a concurrent environment is still shared only

in name and not by value between objects of the same class.

2. Concurrency in a Multiprocessor Environment

Parallel processing can be divided into two basic architectures: Shared

Resource and Distributed Resource systems, as shown in Figure 7 [INM89].

Shared Resource systems execute the components of a problem on conventional

CPU's. They are connected by a common bus to shared memory. A Distributed

Resource system executes the parallel parts of a problem among hardware nodes.

Each node runs its own program and includes a CPU with local memory. In our

experiments, each node is a Transputer?.

3. OOP In A Parallel System

In this section we study variables in a multiprocessor environment. All

programs used in this section were developed in Classic-Ada and executed on a

Transputer.

9 Transputers are microprocessors built by Inmos, the English semiconductor
manufacturer. A Transputer is a single VLSI device with processor, memory,
and communications links for direct connection to other transputers. They
operate as a stand alone machine, or as a node in a network interconnected via
links. When in a network, each transputer operates on its own using only on chip
memory and programs. Communication from one processor to another occurs
over the links, each of which has a dedicated link interface. The communication
interface is implemented in hardware and does not need the processor for its
control. [NM89]

41

Distributed Resource Systems Shared Resource Systems

-Independent Parallel -Shared Memory

-Dedicated Resource -Shared Buses

CPU CPU CPU CPU CPU

CPU CPU

Memory

Figure 7 Distributed and Shared Resource Systems

42

Before continuing, however, it is first necessary to give a brief

description of the environment.

a. Transputer

A Transputer is a single device with processor, memory, and

communications links for direct connections to other Transputers.

(1) Communication. Link communications run simultaneously with

processor computation to maximize the performance of distributed systems. Each

link carries information bidirectionally on two wires between a pair of transputers

in the computing network. The links provide for direct communication between

processes on neighboring transputers. Communication across the link uses a link

protocol and is accomplished as a sequence of single byte transmissions.

(2) Memory. Transputers are not designed to share memory;

instead, each has its own dedicated memory. The transputer also has a small

amount of on-chip memory for faster access. On the T800 this is four Kbytes of

static RAM. Also, four Gbytes of addressable external memory is possible.

b. Two Objects, Each On Separate Transputers

For this experiment we run each instance on a separate transputer.

Thus, we expect to observe the problems previously discussed about concurrent

environments in distributed systems. For this experiment we use the class Alpha

as shown in Figure 3. All the programs used in this section are contained in

Appendix D. Since we have two transputers, we need to have one program for

43

each of them. Thus, we created two programs named programCV_trans.ca which

are nearly identical; they differ only in the creation of different objects (one

generates the object Al and the other object A2). The important issue in each

program was to create one instance (object) and then change the value of the class

variable to see if that change would affect the object residing on the other

transputer. We compiled each program separately, then bind it with each group

of files for each transputer, and then run the program. These two almost identical

files are the Alpha_one.ada and Alphatwo.ada files.

We must point out here that the type of the class variable has been

changed from character to integer as we encountered difficulties in debugging the

configuration for the occaml0 files that we were using for the channels. Using

integers, it was easier to configure the channels, unfortunately, the manuals

[AA90] were not much help in this problem.

Communication in the Classic-Ada programs was achieved via the

implementation package CHANNELS. Both programs made use of the package

COMMON which declared the data types used in channel communication. The

'0 The transputer architecture directly implements the process model of
concurrency to describe parallel systems naturally and simply. This logical model
is the basis of occam, the first general purpose language with built in support for
both concurrency and communication. Occam is used to program transputers in
a way that closely resembles real-world systems. It can also be easily combined
with conventional high level languages in different ways to create parallel
descriptions of problems. Occam and transputers were designed to complement
each other in a powerful way. Occam is not only based on concepts of
concurrency but also on communication concepts that relate directly to the
transputer links.[INM89]

44

package COMMON also contained an instantiation of the generic package

CHANNEL_10 which provided channel read and write operations. This package

ensured that each program had a consistent view of the data communicated

between them. Communication between the two programs occurred as follows:

" After the Set-classvariable method in the random.ada file we put the
statement WRITE, so that the value of classvariablel would be put on the
channel; from then on any other transputer existing in the network could
READ the value of this variable.

" After the first Get-classvariable method in the sieve.ada file we put the
statement READ, so that we could get the new value of classvariablel from
the channel.

The output file programCVtrans.script is also included in Appendix D. It

is important to realize that since transputers do not have shared memory, each

time the value changed it was necessary to send/receive to/from the channel in

order to update the other objects. Thus, the user has to establish the point where

the update of the values takes place. However, this means that the class variable

does not always have the same value in all instances (objects) of a class.

It is shared only by all instances residing on a single transputer until it is

explicitly passed from one transputer to another. Thus, the class variable can no

longer be considered to the shared between all instances of the class.

45

4. Concurrent Execution Summary

As we observe in the sequential execution section, a class variable has

the property of being shared between all objects of the same class and also

between classes related by inheritance.

In our concurrent programs in a uniprocessor environment we have

reinforced the idea that on a class variable shared between all objects, regardless

of which task is involved. What we have actually done is run a multiprocessing

program on a uniprocessor to simulate a shared resource system (i.e., shared

memory), since the opportunity to work on a distributed system with common

memory as presented in Figure 7 did not exist.

In a parallel system the experiment was conducted in a transputer

environment (i.e., a distributed resource system) as depicted in Figure 7. The

class variable has its value shared between all instances of a class on a single

transputer, but not between transputers. Upon reflection this makes sense as

what happened is that we essentially created several different (but duplicate)

classes which just happen to have the same name. That is, the transputer is a

distributed resource system and since the class definition is loaded (duplicated)

on each processor's memory, then it should be expected that changing value of

class variable on one processor should have no affect on its value in another

processor.

46

IV. METHOD VARIABLES

As we have seen, variables in an object-oriented environment take one of

two forms: they are either class variables or instance variables. Class variables

belong to the class; that is, they are shared by all instances of the class. Instance

variables belong to individual objects. Although there are a few variations, such

as how the class variable is implemented when inherited and various options that

modify the visibility of the variables, these are the only two kinds of variables

available.

It is questionable whether these two types of variables are enough for all

situations. It has been suggested that we may wish to implement methods as

individual processes with their own private state of variables [BN91]. This is one

possible solution to the problem of implementating/modeling software processes

in an 00 environment. We may have several processes, each with its own

private set of data, but they all manipulate a common ('global') set of data - this

is not possible in any object-oriented programming language that we know of.

Building on the results of the last chapter, we will now propose and

experiment with various forms of 'method variables' in an attempt to expand the

number and types of variables available in an object-oriented environment.

47

Each object has a protocol, which is the set of messages that it can respond

to (this is also called the external interface of the object). It is simply the

collection of methods defined for the instances of its class. Each time we send a

message to an instance (object), the method corresponding to the message's

selector is executed. Typically, methods have formal parameters, and the values

of the message's argument bind the formal parameters of the method before

executing the method's code. The state of an object can be retrieved and updated

through its methods. However, the method has no state of its own. According

to [KA90], methods can be categorized as:

" Those methods whose primary purpose is to retrieve or update variables.

" More general methods performing complex computations.

But our question is: can we have methods that perform complex

computations using variables that are not accessible by other methods? That is,

could a method maintain variables for itself only for a single instance (object)?

We will now develop the general idea of an object-oriented language with this

property. More specifically, we want to simulate the ability for a method to have

data that is not accessible by other methods defined for the class. We begin by

defining the concept of method variables, then explore how they are used in both

sequential and concurrent execution environments.

48

A. METHOD VARIABLES

We now introduce the method variable (my), which can take the form of either

a method class variable or a method instance variable, depending on which

properties we want to give to the variable. The method instance variable (miv) is

accessible by only a single method of a single object. The method class variable

(mcv) is shared by all objects of a class, but is only accessible by a single method.

Method variables can easily be incorporated into the class definition" (see

Figure 8). Each time we instantiate an object, it has the method variables that are

defined in the class definition for the given methods. Our approach to method

variables follows the general properties of variables in an object-oriented

language. That is, we can divide method variables into two main categories:

" Method variables based on instance variables that are part of the private
data of each object (method instance variables).

" Method variables based on class variables that are shared by every object in
the class (method class variable).

Thus, each method variable inherits the properties of the type of variable where

it is based on.

Figure 8 shows how class definitions with method variables can be

presented in a language independent manner. We use the example of class Alpha

from the last chapter, adding method variables to some of the methods.

"Since Classic-Ada class definitions are in two files, the specification and the
body, the method variable will be declared in the body.

49

Class Alpha
Superclass: none
Class variables: cv
Instance variables: iv
Methods:

MethodX
Method_instance-variables: Xjmivl, X miv2
Methodclass variables: X mcv

MethodY
Methodinstance variables: none
Method-class-variables: none

MethodZ
Methodinstance-variables: Zmiv
Methodclassvariables: Z mcv

Figure 8 The Class Definition with Method Variables

The class Alpha has one class variable (cv), one instance variable (iv), and

three methods (MethodX, Method_Y, and MethodZ). MethodX has two

method instance variables (X mivl and Xmiv2) and a method class variable

(Xmcv). MethodY has no method class variables or method instance variables.

MethodZ has one method instance variable (Zmiv) and one method class

variable (Z_mcv).

1. Method Instance Variables

Method instance variables are based on instance variables. They can be

thought of simply as instance variables that are only accessible by a single

method. In Figure 8, method instance variables are declared along with the

method itself. In our test applications, however, this is not possible. Instead, we

declare them as instance variables that are 'dedicated' to the appropriate method

50

in order to achieve the simulation of the desired properties of the method instance

variable. That is, the instance variables are only used by the appropriate method

as a method instance variable.

The basic idea of a method instance variable though, turns out to be

fairly simple: we keep all the properties of an instance variable, but the variable

is now implemented and maintained at a level lower than normal in an object-

oriented environment - they are now maintained inside the method.

We now have methods with variables that are not accessible by other

methods of the same object of a given class, as can be seen in Figure 9. The

X mivl and Xmiv2 are accessible only from the Method_X, and Zmiv is

accessible only from the MethodZ, for any given instance of class Alpha.

Thus, we can simulate having a variable that is accessible by only a

single method. This variable is not accessible by other methods defined for that

class. Therefore we have succeeded in eliminating the problem of having all

variables accessible by all methods in a given ol ,ct. We have also extended the

types of shared and private data in object-oriented environments.

2. Method Class Variables

Method class variables are similar in concept to method instance

variables. However, method class variables are shared in value by a single

method for all instances of a class, whereas method instance variables are not

shared in value. Thus, we have essentially created a class variable that is limited

in accessibility to a single method of the class.In our test implementation, we

51

Clas Alpha

cv

Object Al1 Object A2 Object A3

iv iv iv

Method X MethodX MethodX

X-mivl,Xmiv2 X~mivl,X..miv2_ Xmivl,X-miv2

Metho-d Y MethodY MethodY

MehdZMethod-Z Method-Z

Figure 9 Method Instance Variable Accessibility in Class Alpha

52

create class variables which correspond to each method class variable that is

defined inside a method. Once again, no actual modifications to the language

itself were undertaken.

We now have methods with variables that are shared by all instances

of a given class. As can be seen in Figure 10, all instances of class Alpha have a

MethodX which share the method class variable X mcv. Similarly all instances

of class Alpha have a MethodZ which share the method class variable Zmcv.

Clam. Alpha

CV

Object ,
O b

j
e c t "

JObject 3

MethodX MethodY

Xmcv

Method_Z

Z_mcv

Figure 10 Method Class Variable Accessibility in Class Alpha

53

B. SEQUENTIAL EXECUTION

In sequential execution it is relatively easy to examine the responses of

variables as they cannot be accessed by more than one process at a time. We now

examine the use of method variables in a sequential environment.

1. Method Instance Variables

Following the approach used in the last chapter, we now define the

class Alpha as shown in Figure 11. The purpose is to run methods in different

objects using the method instance variables only for the particular method in each

object. We have the methods Method X, MethodY, and MethodZ. MethodX

has the method instance variable X miv, and MethodY has the method instance

variable Ymiv.

The specification and implementation files of class Alpha are the

Alpha_.spec-miv.ca and Alpha-body-miv.ca. All files discussed in this section

contained in Appendix E, Section A. In order to simulate the method instance

variables, we have created instance variables that correspond to the method

instance variables for each method. Thus, each time we use a method for an

object, the method instance variable will still have the last value given to it when

this particular method was used with the object.

The main program file is the programmiv.ca. Our goal here is to

observe the responses of the method instance variables in different methods and

objects of a class. The output of the main procedure of the program is presented

54

Class Alpha
Superclass: none
Class variables: none
Instance variables: none
Methods:

Method_X
Method class variables: none
Method instance variables: X_miv

Method_Y
Method class variables: none
Method instance variables: Ymiv

Method_Z
Method class variables: none
Method instance variables: none

Create
Method class variables: none
Method instance variables: none

Delete
Method class variables: none
Method instance variables: none

Figure 11 Class Alpha with Method Instance Variables

in the file programmiv.script. In the main procedure we create two instances of

class Alpha, and apply the methods in the order MethodX, MethodY,

Method_X, MethodY.

Each time we call a method we get the value of the instance variable

corresponding to the method instance variable for that method. Note that even

though we were able to declare a variable inside the method, this is actually a

temporary variable that only exists while the method is executing. Also note that

there is nothing that keeps other methods from accessing the instance variables

55

maintaining the values of the method instance variables - we are only defining

and testing the concept at this time, not the actual implementation' 2.

As can be seen in the output, the initial value of the method instance

variables was null, as no default value was given. Once the value of the method

instance variable is set however, that value is still there the next time that the

method is called.

As expected, the values of the method instance variables are in

accordance with the observations made in Chapter III. That is, values of the

method instance variables are not shared by all objects, and each time we access

a method for the same object the met ,J intance variable has the value given to

it the last time this method for that object was involved. Although there is

nothing in place at this time to keep other methods from accessing the instance

variables maintaining the values of the method instance variables, we have

simulated the ability for each method to maintain its own value for the method

instance variables inside each object.

It is reasonable to expect method instance variables to behave similarly

to instance variables when inheritance is considered. That is, if a method with

method instance variables is inherited, then every instance of the subclass will

have that method, each with its own private copy of the method instance variable.

"2We feel that this is no different from many early object-oriented
programming languages which did not provide for encapsulation of any kind.
Although access to variables from outside the object was not prevented, the basic
concepts were still there.

56

Class Alpha
Superclass: none
Class variables: none
Instance variables: none
Methods:

Method_X
Method class variables: none
Method instance variables: X miv

MethodY
Method class variables: none
Method instance variables: Y miv

Method_Z I

Method class variables: none
Method instance variables: none

Create
Method class variables: none
Method instance variables: none

Delete
Method class variables: none
Method instance variables: none

Class Beta
Superclass: none
Class variables: none
Instance variables: none
Methods:

Create
Method class variables: none
Method instance variables: none

Delete
Method class variables: none
Method instance variables: none

Figure 12 The Classes Definition

Consider classes Alpha and Beta as shown in Figure 12. The class Beta inherits

all variables and methods defined in the class Alpha, and the properties of those

variables and methods. The files of class Beta are the Beta spec-miv.ca and

57

Beta body-miv.ca. All files used in this section are contained in Appendix E,

Section B, except for the class Alpha files (which have not changed) that are

contained in Appendix E, Section A.

In this experiment we want to verify that inherited method instance

variables behave as expected. The main program is the Programjmiinher.ca. and

its output is contained in Program miv_inher.script. Objects are created and

manipulated in the following order:

" First instance of class Alpha (object Al)

" First instance of class Beta (object B1)

" Second instance of class Alpha (object A2)

" Second instance of class Beta (object B2)

We then invoke messages in the order Method_X, MethodY, Method_X,

MethodY.

As can be seen in the output of this program, the values of the method

instance variables are not shared by objects and methods. Each time we use a

method in the same instance (object), it has the value given to it the last time this

method was involved. Thus the, method instance variable is inherited properly

by the subclass, keeping the property of not being shared between the methods

of an object.

58

2. Method Class Variables

To illustrate the use of method class variables, we define the class

Alpha as presented in Figure 13.

Class Alpha
Superclass: none
Class variables: none
Instance variables: none
Methods:

Method_X
Method class variables: X_mcv
Method instance variables: none

Method_Y
Method class variables: Ymcv
Method instance variables: none

Method_Z
Create

Method class variables: none
Method instance variables: none

Delete
Method class variables: none
Method instance variables: none

Figure 13 Class Alpha with Method Class Variables

The files with the specification and implementation of class Alpha are

the Alpha-specjmcv.ca and Alpha-body-mcv.ca. The main program, which creates

instances of the class Alpha and manipulates them, is the file program rac.ca, and

the output is in the file program mcvscript. Our goal here is to observe the value

responses of method class variables through different methods and objects of a

class. The source code of all files discussed in this section are contained in

Appendix F, Section A.

59

In the main procedure, we create two instances of class Alpha and

apply methods in the order MethodX, MethodY, MethodX, MethodY. Each

time we call a method, we get the value of the class variable used to implement

of the corresponding method class variable for that method. As with method

instance variables, we are only exploring and defining the concept and are not

concerned with the actual implementation.

As can be seen in the output, the value of the method class variable is

the one given the last time this particular method called, regardless of the object

involved. Thus the value of the method class variable for each method is not

shared between the methods of the object, but is shared between the same

methods of the different instances in the same class.

As with method instance variables, it is reasonable to expect method

class variables to behave similarly to class variables when inheritance is

considered. To demonstrate this, we now define the class Beta as a subclass of

Alpha, as shown in Figure 14.

The main program is the Program-mcv_inher.ca. and its output is

contained in Program-mcv inher.script. The files of class Beta are the

Beta-specmcv.ca and Betabody_mcv.ca. All files used in this section are contained

in Appendix F, Section B except for the class Alpha files (which have not

changed) that are in Appendix F, Section A. Objects are created and manipulated

in the following order:

60

Class Alpha
Superclass: none
Class variables: none
Instance variables: none
Methods:

Method_X
Method class variables: Xmcv
Method instance variables: none

Method_Y
Method class variables: Ymcv
Method instance variables: none

Create
Method class variables: none
Method instance variables: none

Delete
Method class variables: none
Method instance variables: none

Class Beta
Superclass: Alpha
Class variables: none
Instance variables: none
Methods:

Create
Method class variables: none
Method instance variables: none

Delete
Method class variables: none
Method instance variables: none

Figure 14 Classes Alpha and Beta Definition

" First instance of class Alpha (object Al)

" First instance of class Beta (object BI)

" Second instance of class Alpha (object A2)

e Second instance of class Beta (object B2)

61

Methods are then invoked in the order MethodX, MethodY,

MethodX, MethodY. Each time we invoke a method we get the corresponding

class variable for that method's method class variable.

As can be seen in the output, the value of the method class variable is

the one given to it the last time this particular method was called, regardless of

the object involved (or its class). Thus, the value of the method variable for each

method is not shared between the methods of the instance (object), but is shared

between all of the instances of a class and its subclass.

C. CONCURRENT EXECUTION

We will now show that the concept of method variables is also valid in a

concurrent environment.

1. Concurrency In a Uniprocessor Environment

For these experiments we use the class Alpha as previously defined and

shown in Figures 11 and 13. We want to illustrate the use of method class

variables and method instance variables in a simulated concurrent environment,

observing the responses of the variable.

a. Method Instance Variables

The main program, which creates instances of the class Alpha and

manipulates them, is in the file program miv_conc.ca and the output is in the file

program miv conc.script. All files used in this section are in Appendix G, Section

A. We have three tasks in the main program; tl and t2 which create objects and

62

send messages that invoke the methods that we want to experiment with, and the

main procedure prints a simple message. To make sure that all the tasks will

start running at the same time, we give the same priority to each task (pragma

priority (1)). Each of the tasks t1 and t2 create an object of class Alpha and we

apply the methods in the order Method_X, Method_Y, MethodX, MethodY.

In the main task we have printed the word "main" so that we can

observe when this task runs. After beginning the main program, we expect that

the two tasks tl and t2 will run in parallel with the main one. Note that before

the main procedure ends, the other tasks must finished first. The final output

indicated that the program executed in the following order:

" main procedure begins

" object2 created and manipulated

* objectl created and manipulated

" main procedure ends

The reason that the program chooses to run the task t2 first is

arbitrary and depends only on the system, since we gave the same priority for all

tasks. The results also reinforce the statement that all other tasks, must finish

before the main procedure ends. As expected, the value of the method instance

variable for each instance and also for each task is in accordance with the results

obtained with instance variables in Chapter III.

63

b. Method Class Variables

The main program, which creates instances of the class Alpha and

manipulates them, is in the file program-mcvconc.ca and the output is in the file

program mcvconc.script. All files used in this section are in Appendix G, Section

B. We have three tasks in the main program; t1 and t2 which create objects and

send messages that invoke the methods that we want to experiment with, and the

main procedure prints a simple message. To make sure that all the tasks will

start running at the same time, we give the same priority to each task (pragma

priority (1)). Each of the tasks tl andt2 create an object of class Alpha and apply

the methods in the order Method_X, MethodY, MethodX, MethodY.

In the main task we have printed the word "main" so that we can

observe when this task runs. After beginning the main program, we expect that

the two tasks tl and t2 will run in parallel with the main one. Note that before

the main procedure ends the system has to have finished all the other tasks. The

final output indicated that the program executed in the following order:

* main procedure begins

• object2 created and manipulated

" objecti created and manipulated

" main procedure ends

The reason that the program chooses to first run the task t2 first is

arbitrary and depends only on the system, since we gave the same priority for all.

64

The results also reinforce the statement that all other tasks, must finished before

the main procedure ends. As expected, the value of the method class variable for

each instance and also for each task is in accordance with the results obtained

with class variables in Chapter III.

2. Concurrency In a Distributed Environment

The use of method variables in a system with distributed resources,

such as a Transputer, is actually similar to sequential execution. This is because

Transputers do not have shared memory. Therefore, each time that the value of

shared variable changes we have to update it through the communication

channels to the other objects, methods, and classes. We would expect that

method class variables and method instance variables would behave exactly as

class variables an instance variables in this type of environment. That is, method

instance variables are private for each object, and method class variables are only

shared by objects residing on a single transputer.

65

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSIONS

This thesis began with a survey of the literature which served as the basis

for ideas as to possible answers to our questions of how to have shared data at

different levels within an object-oriented system. It then studied Classic-Ada

programs to build knowledge and gain the experience of working with this

object-oriented programming language in different execution environments.

The Classic-Ada programs served two main purposes. First, to study

various aspects of variables in an object-oriented environment under different

modes of execution. Secondly, to simulate how to implement and maintain both

shared and private data at various levels in an object-oriented environment.

Our suggested solution of a new type of variable, the method variable,

attempts to satisfy the following investigative questions:

1. Is it possible for a single method to have data that is not accessible by
other methods defined for that class?

2. Is it possible for a single method to have data shared between various
instances of a class but not accessible by other methods defined for that
class?

66

B. RECOMMENDATIONS FOR FUTURE RESEARCH

All of the code developed for this thesis was implemented in Classic-Ada.

Although this is sufficient for a general proof of concept of method variables,

implementation in other object-oriented languages may be worthwhile.

More importantly though, method variables were added to an application,

not to the language itself. That is, there is nothing in the language to prevent one

method from accessing another method's method variables. Thus, a compiler, or

at least a pre-processor, should be developed to enforce the accessibility of

method variables.

Both method instance variables and method class variables are accessible by

only a single method. It may also be desirable to have variables that are

accessible by more than one method of a class, but not by all of them. Although

this may be useful concept in an object-oriented environment, developing a clear

and concise way of declaring these variables is in need of further research.

We have also not addressed the integrity of shared data in object-oriented

environment. This is especially important in a concurrent or distributed system.

Techniques used in conventional concurrent and distributed systems should be

considered here, as should the sharing of data in database management

systems.

67

APPENDIX A - SEQUENTIAL EXECUTION WITHOUT INHERITANCE

A. CLASS VARIABLE

1. Alpha.specCV.ca

class Alpha is

method Create (NewInstance : out Objectid);

instance method Getclass-variable;

instance method Set-class-variable (temp-variable in character);

instance method Delete;

end Alpha;

68

2. AlphabodyCV.ca

with text io;
use textio;

Class body Alpha is

classvariablel Character;

method Create (newinstance : out Object-id) is
begin

newinstance:= INSTANTIATE;
put-line("in method create");

end Create;

instance method Get-classvariable is
begin

put-line ('The current value of the classvariablel at this object is:");
put(classvariablel);
new_line;

end Getclassvariable;

instance method Setclassvariable (temp-variable : in character) is
begin

putuline ('The new value of the classvariable1 is set and is");
classvariable1 := tempvariable;
put(classvariable1);
newline;

end Setclassvariable;

instance method Delete is
begin

putjline("Now we delete from the memory this instance of class Alpha");
DESTROY;

end Delete;

end Alpha;

69

3. Program..CV..one.ca

with Alpha;

procedure program_.CV-one is

Objectl Object-id;:
Object2 :Object -id;
Object3 :Object-id;

begin

put-line("Here is the begiming of the objecti");
Objectl : Alpha.Class-object;
send (Objecti, Create, new-instance => Objecti);
send (Objectil, Get-class-variable);
send (Objecti, Set-class-variable, temp-variable => WX);
send (Objectil, Get-class-variable);
send (Objecti, Delete);

put-ine("Here is the begining of the object2");
Object2: Alpha.Class-object;
send (Object2, Create, new-instance => Object2);
send (Object2, Get -class -variable);
send (Object2, Set-class-variable, tempvariable => 'Y);
send (Object2, Get-class-variable);
send (Object2, Delete);

putjine("Here is the begining of the object3");
Object3 :=Alpha.Class-object;
send (Object3, Create, new-instance => Object3);
send (Object3, Get-class-variable);
send (Object3, Set-class-variable, temp..yariable => 'Z')
send (Object3, Get-class-variable);
send (Object3, Delete);

end programCV-one;

70

4. ProgramCVone.script

Here is the beginning of the objecti
in method create
The current value of the classvariablel at this object is:

The new value of the classvariablel is set and is:
x
The current value of the class_variablel at this object is:
x

Now we delete from the memory this instance of class Alpha

Here is the beginning of the object2
in method create
The current value of the classvariablel at this object is:
x
The new value of the classvariablel is set and is:
Y
The current value of the classvariablel at this object is:
Y

Now we delete from the memory this instance of class Alpha

Here is the beginning of the object3
in method create
The current value of the classvariablel at this object is:
Y
The new value of the classvariablel is set and is:
z
The current value of the classvariablel at this object is:
z
Now we delete from the memory this instance of class Alpha

71

5. Program..CV-two.ca

with Alpha;

with text-io; use textjio;

procedure program_,CV-two is

Objectl Objectjd;
Object2 :Objectid;
Object3: Objectid;

begin

Objecti : Alpha.Class-object;
send (Objecti, Create, new -instance => Objecti);
send (Objecti, Get -class -variable);
send (Objecti, Set-class-variable, temp..yariable => WX);
send (Objecti, Get-class-variable);

Object2 :=Aipha.Class object;
send (Object2, Create, new -instance => Object2);
send (Object2, Get -class-variable);
send (Object2, Set -class -variable, temp..yariable => 'Y');
send (Object2, Get-class-variable);

Object3: Alpha.Class-object;
send (Object3, Create, new-instance => Object3);
send (Object3, Get -class -variable);
send (Object3, Set-class-variable, temp..yariable => 'ZE)
send (Object3, Get-class-variable);

put -ine('Now we destroy the objects");
send (Objecti, Delete);
send (Object2, Delete);
send (Object3, Delete);

end program CV-two;

72

6. ProgramCVjtwo.script

Here is the beginning of the objecti
in method create
The current value of the classvariablel at this object is:

The new value of the classvariablel is set and is:
x
The current value of the classvariablel at this object is:
x

Here is the beginning of the object2
in method create
The current value of the classvariablel at this object is:
x
The new value of the classvariablel is set and is:
Y
The current value of the classvariablel at this object is:
Y

Here is the beginning of the object3
in method create
The current value of the classvariablel at this object is:
Y
The new value of the classvariablel is set and is:
z
The current value of the classvariablel at this object is:
z

Now we destroy the objects
Now we delete from the memory this instance of class Alpha
Now we delete from the memory this instance of class Alpha
Now we delete from the memory this instance of class Alpha

73

B. INSTANCE VARIABLE
1. Alpha.spec..IVca

class Alpha is

method Create (New-Instance out Object-id)

instance method Get-instance-variable;

instance method Set-instance-variable (temp..yariable in character);

instance method Delete;

end Alpha;

74

2. Alpha-bodyIV.ca

with textjio;
use textio;

Class body Alpha is

instance_variablel : instance Character;

method Create (newinstance : out Objectid) is
begin

newinstance := INSTANTIATE;
putjline("in method create");

end Create;

instance method Getinstancevariable is
begin

put-line ("The current value of the instancevariablel at this object is:");
put(instancevariablel);
newline;

end Get-instancevariable;

instance method Setinstancevariable (temp-variable: in character) is
begin

put-line ("The new value of the instancevariablel is set and is :");
instancevariablel := temp_variable;
put(instance variablel);
new_line;

end Setinstancevariable;

instance method Delete is
begin

put-line('Now we delete from the memory this instance of class Alpha");
DESTROY;

end Delete;

end Alpha;

75

3. Progrant..V.ca

with Alpha;
with Beta;
with text-io; use text io;

procedure programIV is

Objecti Object~id;
Object2: Object-d;
Object3: Objectj-d;

begin

putjine("Here is the beginning of the objecti");
Objectl : Alpha.Class-object;
send (Objecti, Create, new-instance => Objecti);
send (Objecti, Get-instance-variable);
send (Objecti, Set-instance -variable, temp variable => WX);
send (Objecti, Get-instance-variable);
new-line;
putjline("-----------------
new-line;

put-line("Here is the beginning of the object2");
Object2 :=Alpha.Class -object;
send (Object:2, Create, new-instance => Object2);
send (Object2, Get-instance -variable);
send (Object2, Set-instance-variable, temp-variable => 'Y');
send (Object2, Get-instance-variable);
new line;
put l ine"- --- --
new-line;

put-line("Here is the beginning of the object3");
Object3 :=Alpha.Class-object;
send (Object3, Create, new-instance => Object3);
send (Object3, Get-instance-variable);
send (Object3, Set-instance-variable, temp..yariable => 'Z')
send (Object3, Get-instance-variable);
put..line'--
new-line;

76

putline("Results");
new line;
putline('"The value for Al is:");
send (Objecti, Getinstance variable);
new-line;
put.line("
newline;
putline('The value for A2:");
send (Object2, Get-instance_variable);
new-line;
putline(""
newline;
putjline("The value for A3:");
send (Object3, Getinstancevariable);
newline;
putline(" - ----------- -);

putline("Now we destroy the objects");
send (Object1, Delete);
send (Object2, Delete);
send (Object3, Delete);

end program.IV;

77

4. ~PgramJV.script

Here is the beginning of the objecti
in method create
The current value of the instancevariablel at this object is:

The new value of the instancevariablel is set and is:
x
The current value of the instancevariablel at this object is:
x

Here is the beginning of the object2
in method create
The current value of the instancevariablel at this object is:

The new value of the instancevariablel is set and is:
Y
The current value of the instancevariablel at this object is:
Y

Here is the beginning of the object3
in method create
The current value of the instancevariablel at this object is:

The new value of the instancevariablel is set and is:
z
The current value of the instancevariablel at this object is:
z

Results

The value for Al is:
The current value of the instancevariablel at this object is:
x

78

The value for A2:
The current value of the instancevariablel at this object is:
Y

The value for A3:
The current value of the instancevariablel at this object is:
z

Now we destroy the objects
Now we delete from the memory this instance of class Alpha
Now we delete from the memory this instance of class Alpha
Now we delete from the memory this instance of class Alpha

79

APPENDIX B - SEQUENTIAL EXECUTION WITH INHERITANCE

A. CLASS VARIABLE

1. Alpha-spec CV.ca

class Alpha is

method Create (New-Instance : out Objectid)

instance method Get-classvariable;

instance method Set classvariable (tempvariable in character);

instance method Delete;

end Alpha;

80

2. Alpha-bodyCV.ca

with textio;
use text-io;

Class body Alpha is

classvariablel Character;

method Create (new-instance out Object-id) is
begin

newinstance := INSTANTIATE;
putline("in method create");

end Create;

instance method Getclassvariable is
begin

put-line ("The current value of the classvariablel at this object is:");
put(classvariable1);
new_line;

end Get-classvariable;

instance method Setclassvariable (temp.yariable : in character) is
begin

put-line ("The new value of the classvariablel is set ");
putline ("and is :");

classvariablel := temp-variable;
put(classvariablel);
newline;

end Setclassvariable;

instance method Delete is
begin

putline("Now we delete from the memory this instance of class Alpha");
DESTROY;

end Delete;

end Alpha;

81

3. Beta..spec..CV.ca

class Beta is

superclass Alpha;

method Create (New-instance out Objectid)

instance method Delete;

end Beta;

82

4. Beta.bodyCV.ca

with text io;
use text10;

Class body Beta is

method Create (newinstance : out Object-id) is
begin

newinstance:= INSTANTIATE;
putjline("in method create");

end Create;

instance method Delete is
begin

put-line("Now we delete from the memory this instance of class Beta");
send (super, Delete);
DESTROY;

end Delete;

end Beta;

83

5. Program...CVjinher.ca

with Alpha;
with Beta;
with text-io; use text-io;

procedure program..CV-inher is

Objet~l Objctid

ObjectA2: Object-id;
ObjectA2 : Objectid;
ObjectBl: Objectid;

begin

new line;
put line("Here is the beginning of object Al");
new-line;
ObjectAl :=Alpha .Class_object;
send (ObjectAL, Create, new-instance => ObjectAl);
send (ObjectAl, Get -dcass-Variable);
send (ObjectAL, Set-cdass-variable , temp~yariable => WX);
send (ObjectAl, Get-class-variable);
new-line;
put line("------ --------)
new-line;

put -line("Here is the beginning of object BI");
new-line;
ObjectB1 : Beta.Class-object;
send (ObjectBl, Create, new-instance => ObjectBl);
send (ObjectBl, Get -dcass -variable);
send (ObjectBl, Set-class-variable , temp-yariable => 'M');
send (ObjectBl, Get-class-variable);
new-line;
put -line("-----
new-line;

84

new-line;
putjine("Here is the beginning of object A21);
mew-line;
ObjectA2 := Alpha.Class..bject;
send (ObjectA2, Create, new-instance => ObjectA2);
send (ObjectA2, Get-class_variable);
send (ObjectA2, Set -class-variable, temp~yariable => 'Y');
send (ObjectA2, Get_class-variable);
new -line;

new-line;"

new-line;

putjine("-ere is the beginning of object B21);
mnew-line;
objectb2 :=Beta .Class..pbject;
send (ObjectB2, Create, new-instance => ObjectB2);
send (ObjectB2, Get-class-variable);
send (ObjectB2, Set -class -variable , temp..yariable => 'N);
send (ObjectB2, Get-class-variable);
new -line;

new-line;

put-line(--------Total Results-----");
new-line;
put -ine("The value of Al:");
send (ObjectAl, Get-class-variable);
put -ine("The value of Al:");
send (ObjectA2, Get-class-variable);
put -ine("The value of Bi:");
send (ObjectBl, Get -class~variable);
put -ine("The value of B2:");
send (ObjectB2, Get-class-variable);
new-line;

put -ine("for Al");
send (ObjectAl, Delete);

putjine("for A21);

85

send (ObjectA2, Delete);

put -ine("for Bi');
send (ObjectB1, Delete);

put -ine("for B2");
send (ObjectB2, Delete);

end programCV-inher;

86

6. ProgramCV-inher.script

Here is the beginning of object Al
in method create
The current value of the classvariablel at this object is:

The new value of the classvariablel is set and is:
x
The current value of the class variablel at this object is:
x

Here is the beginning of object B1
in method create
The current value of the classvariablel at this object is:
x
The new value of the classvariablel is set and is:
M
The current value of the class variablel at this object is:
M

Here is the beginning of the object A2
in method create
The current value of the class variablel at this object is:
M
The new value of the classvariablel is set and is:
Y
The current value of the class variablel at this object is:
Y

Here is the beginning of object B2
in method create
The current value of the class variablel at this object is:
Y
The new value of the class variablel is set and is:
N
The current value of the classvariablel at this object is:
N

87

-Total Results

The value of Al:
The current value of the classvariablel at this object is:
N
The value of A2:
The current value of the class variablel at this object is:
N
The value of BI:
The current value of the class variablel at this object is:
N
The value of B2:
The current value of the classvariablel at this object is:
N

for Al
Now we delete from the memory this instance of class Alpha
for A2
Now we delete from the memory this instance of class Alpha
for B1
Now we delete from the memory this instance of class Beta
Now we delete from the memory this instance of class Alpha
for B2
Now we delete from the memory this instance of class Beta
Now we delete from the memory this instance of class Alpha

88

B. INSTANCE VARIABLE
1. AlphaspecJV.ca

class Alpha is

method Create (NewInstance : out Objectid);

instance method Getinstancevariable;

instance method Setinstancevariable (temp-variable in character);

instance method Delete;

end Alpha;

89

2. Alpha-bodyJV.ca

with textio;
use text.io;

Class body Alpha is

instancevariablel : instance Character;

method Create (new-instance : out Objectid) is
begin

new-instance := INSTANTIATE;
putline("in method create");

end Create;

instance method Getinstance variable is
begin

putline ("The current value of the instancevariablel at this object is:");
put(instance variablel);
new line;

end Get-instancevariable;

instance method Setinstancevariable (temp-variable: in character) is
begin

putline ('"The new value of the instance_variablel is set and is :");
instancevariablel := temp variable;
put(instance variablel);
new line;

end Set-instancevariable;

instance method Delete is
begin

putline("Now we delete from the memory this instance of class Alpha");
DESTROY;

end Delete;

end Alpha;

90

3. Beta..specIV.ca

class Beta is

superclass Alpha;

method Create (NewInstance out Objec-id)

instance method Delete;

end Beta;

91

4. Beta-bodyIV.ca

with text_io;
use textio;

Class body Beta is

method Create (newinstance : out Object-id) is
begin

newinstance := INSTANTIATE;
putjlineCin method create");

end Create;

instance method Delete is
begin

putjline("Now we delete from the memory this instance of class Beta");
send (super, Delete);
DESTROY;

end Delete;

end Beta;

92

5. ProgramJVjinher.ca

with Alpha;
with Beta;
with text-io;
use textio;

procedure program-jV inher is

ObjectAl :Object-id;
ObjectA2: Object-id;
ObjectBl Object-id;
ObjectB2: Object _id;

begin

new line;
put line("Here is the beginning of object Al");
new-line;
ObjectAl :=Alpha.Class-object;
send (ObjectAl, Create, new-instance => ObjectAl);
send (ObjectAl, Get-instance_variable);
send (ObjectAl, Set-instance-variable, temp..variable => X')
send (ObjectAL, Get-instance-variable);
new-line;
put lie------------------)
new-line;

put-line("Here is the beginning of object Bl');
ObjectBl : Beta.Class-object;
send (ObjectBl, Create, new-instance => ObjectT~l);
send (ObjectB1, Get-instance-variable);
send (ObjectBl, Set-instance-variable , temp-variable => 'M')
send (ObjectBl, Get-instance-variable);
new-line;
put line("---------------
new-line;

put-line("Here is the beginning of the object A2"1;
ObjectA2 :=Alpha.Class-object;
send (ObjectA2, Create, new-instance => ObjectA2);
send (ObjectA2, Get-instance-variable);

93

send (ObjectA2, Setjinstance-variable , temp~variable => 'Y')
send (ObjectA2, Get-instance-variable);
new-ine;
put -line("
new-line,

put-line("Here is the beginning of object B21);
objectb2 :=Beta.Class-object;
send (ObjectB2, Create, new-instance => ObjectB2)
send (ObjectB2, Getjinstance-variable);
send (ObjectB2, Sptjinstance-variable , tempvyariable => WN);
send (ObjectB2, Getjinstance-variable)
new -line;
put__ line("
new-line;

put -line(" -Total Results
new line;
put line("The value of Al:");
send (ObjectAl, Get-instance-variable);
put -line("The value of A2:");
send (ObjectA2, Get-instance -variable);
put -line("The value of BI ")

send (ObjectBl, Getjinstance-variable);
put -lneV'Thbe value of B2:1);
send (ObjectB2, Get instance_variable);
new-line;

put -line("for Al)

send (ObjectAl, Delete);

put -line("for A2")
send (ObjectA2, Delete);

put -line("for BV);
send (ObjectBl, Delete);

put...line("for B21);
send (ObjectB2, Delete);

end program_IV_inher;

94

6. ProgramVjinher.script

Here is the beginning of object Al
in method create
The current value of the instancevariablel at this object is:

The new value of the instancevariablel is set and is:
x
The current value of the instancevariablel at this object is:
x

Here is the beginning of object B1
in method create
The current value of the instancevariablel at this object is:

The new value of the instancevariablel is set and is:
M
The current value of the instancevariablel at this object is:
M

Here is the beginning of the object A2
in method create
The current value of the instancevariablel at this object is:

The new value of the instancevariablel is set and is:
Y
The current value of the instancevariablel at this object is:
Y

Here is the beginning of object B2
in method create
The current value of the instancevariablel at this object is:

The new value of the instancevariablel is set and is:
N
The current value of the instancevariablel at this object is:
N

95

Total Result-

The value of Al:
The current value of the instancevariablel at this object is:
x
The value of A2:
The current value of the instancevariablel at this object is:
Y
The value of BI:
The current value of the instance_variablel at this object is:
M
The value of B2:
The current value of the instancevariablel at this object is:
N

for Al
Now we delete from the memory this instance of class Alpha
for A2
Now we delete from the memory this instance of class Alpha
for B1
Now we delete from the memory this instance of cla-s Beta
Now we delete from the memory this instance of class Alpha
for B2
Now we delete from the memory this instance ,f class Beta
Now we delete from the memory this instance of class Alpha

96V

APPENDIX C - CONCURRENCY ON A UNIPROCESSOR

A. CLASS VARIABLE

1. Alpha-specCV.ca

class Alpha is

method Create (New Instance : out Objectid);

instance method Getclass-variable;

instance method Setclass-variable (temp-variable in character);

instance method Delete;

end Alpha;

97

2. Alpha..bodyCV.ca

with textio;
use text-io;

Class body Alpha is

class.variablel Character;

method Create (new-instance : out Objectid) is
begin

newinstance:= INSTANTIATE;
put line("in method create");

end Create;

instance method Get-classvariable is
begin

put-line ("The current value of the classvariablel at this object is:");
put(classvariablel);
newline;

end Getclassvariable;

instance method Setclassvariable (temp-variable : in character) is
begin

putline ("The new value of the classvariablel is set ");
putjline ("and is :");

classvariablel := temp-variablel;
put(classvariablel);
newline;

end Setclassvariable;

instance method Delete is
begin

putline("Now we delete from the memory this instance of class Alpha");
DESTROY;

end Delete;

end Alpha;

98

3. Program_.CV..concca

with Alpha;
with text-io;
use text~io;

procedure program_-CV-conc is

pragma priority (1);

task t1 is
pragma priority(l);

end;

task body t1 is
Objecti :Objectjid;
begin

putjine("Here is the object Al");
Objecti : Alpha.Class-object;
send (Objecti, Create, new-instance => Objecti);
putjine("in the first object after create");
send (Objecti, Get-class-variable);
send (Object], Set-class-variable, temp-variable =>'X');
send (Objecti, Get-class-variable);
newjline;

new -line;
end t1;

task Q2 is
pragma priority(l);

end;

task body tQ is
Object2 :Object-d;
begin

putjine("Here is the beginning of object A21);
ObJect2 :=Alpha.Class object;
send (Object2, Create, new -instance => Object2)
putjine("in the A2 object after create");
send (Object2, Get__class-variable);
send (Object2, Set-class-variable, tempyariable=>'Y);

99

send (Object2, Get-class-variable);
new - ine;
put-line("
new-ine;

end t2;

task 0 is
pragma priority(l);

end;

task body S3 is
Object3 :Objectid;
begin

put-ine("Here is the beginning of the A3 object");
Object3: Alpha.Class-object;
send (QObject3, Create, new-instance => Object3)
putjineC'in the third object after create");
send (Object3, Get-class-variable);
send (Object3, Set-class-variable , temp..yariable=> 'Z);
send (Object3, Get-class-variable);
new-ine;

new - ine;
end Q3

begin
put..line("main");
put -ine("we are going do delete Objecti");
send (Objecti, Delete);
putj-ine("we deleted objecti");
send (Object2, Delete);
putj- ine("we deleted object2");
send (Object3, Delete);
putjine("we deleted object3");

end program CV-conc;

100

4. Pogram-CVconcscript

Here is the beginning of the A3 object
in method create
in the third object after create
The current value of the classvariablel at this object is:

The new value of the classvariablel is set and is:
z
The current value of the classvariablel at this object is:
z

Here is the beginning of object A2
in method create
in the A2 object after create
The current value of the class variablel at this object is:
z
The new value of the class-variablel is set and is:
Y
The current value of the classvariablel at this object is:
Y

Here is the object Al
in method create
in the first object after create
The current value of the classvariablel at this object is:
Y
The new value of the classvariablel is set and is:
x
The current value of the classvariablel at this object is:
x

main
we are going do delete Objecti
Now we delete from the memory this -instance of class Alpha
we deleted object1
Now we delete from the memory this instance of class Alpha
we deleted object2
Now we delete from the memory this instance of class Alpha
we deleted object3

101

B. INSTANCE VARIABLE

1. Alpha.specV.ca

class Alpha is

method Create (NewInstance : out Objectid);

instance method Getinstancevariable;

instance method Setinstancevariable (temp-yariable : in character);

instance method Delete;

end Alpha;

102

2. Alpha-bodyIV.ca

with textio;
use textio;

Class body Alpha is

instancevariablel : instance Character;

method Create (newinstance : out Objectid) is
begin

newinstance := INSTANTIATE;
putjline("in method create");

end Create;

instance method Getinstancevariable is
begin

putline ('The current value of the instancevariablel at this object is:");
put(instance-variablel);
newline;

end Getinstancevariable;

instance method Setinstancevariable (tempvariable: in character) is
begin

put-line ('The new value of the instancevariablel is set and is :");
instancevariablel := temp-variable;
put(instancevariable1);
newline;

end Set-instancevariable;

instance method Delete is
begin

putline("Now we delete from the memory this instance of class Alpha");
DESTROY;

end Delete;

end Alpha;

103

3. ProgramjIV...concxca

with Alpha;
with text-io; use textjio;

procedure programj.V -conc is

Objecti :Object-id;
Object2 :Object-id;
Object3: Objectid;

pragma priority (1);

task t1 is
pragma priority(l);

end;

task body t1 is
begin

putjine("Here is the object Al");
Objecti : Alpha.Class-object;
send (Objecti, Create, new-instance => Objecti);
put -ine("in the first object after create");
send (Objecti, Get-instance-variable);
send (Objectl, Set-instance -variable, temp~yariable =>WX);
send (Objecti, Get-instance-variable);
new-line;
put-line("- -____

new-line;
end t1;

task t2 is
pragina priority(l);

end;

task body Q2 is
begin

putjine("Here is the beginning of object A2")
Object2: Aipha.Class object;
send (Object2, Create, new-instance => Object2)
putjine("in the A2 object after create");
send (Object2, Get-instance-variable);

104

send (Object2, Setinstancevariable, temp__yariable=>'Y');
send (Object2, Getinstancevariable);
newline;
put-line("
newline;

end t2;

task t3 is
pragma priority(l);

end;

task body t3 is
begin

put-line("Here is the beginning of the A3 object");
Object3 := Alpha.Class-object;
send (Object3, Create, newinstance => Object3);
putjline("in the third object after create");
send (Object3, Getinstancevariable);
send (Object3, Setinstancevariable , tempvariable=> 'Z');
send (Object3, Getinstance_variable);
newline;
put-line(" ,
newline;

end t3;

begin
putjline("main");
putjline("we are going do delete Object1");
send (Objecti, Delete);
put line("we deleted object1");
send (Object2, Delete);
putjline("we deleted object2");
send (Object3, Delete);
put-line("we deleted object3");

end programIVconc;

105

4. ProgramIV-conc.script

Here is the beginning of the A3 object
in method create
in the third object after create
The current value of the instance-variablel at this object is:

The new value of the instance variablel is set and is:
z
The current value of the instance variablel at this object is:
z

Here is the beginning of object A2
in method create
in the A2 object after create
The current value of the instance variablel at this object is:

The new value of the instancevariablel is set and is:
Y
The current value of the instance variablel at this object is:
Y

Here is the object Al
in method create
in the first object after create
The current value of the instance variablel at this object is:

The new value of the instancevariablel is set and is:
x
The current value of the instancevariablel at this object is:
x

main
we are going do delete Objectl
Now we delete from the memory this instance of class Alpha
we deleted objectl
Now we delete from the memory this instance of class Alpha
we deleted object2
Now we delete from the memory this instance of class Alpha
we deleted object3

106

APPENDIX D - CONCURRENCY ON A MULTIPROCESSOR

A. TWO TRANSPUTERS WITH CLASS VARIABLE
1. Alpha-specCV.ca

class Alpha is

method Create (NewInstance : out Objectid);

instance method Getclass variable;

instance method Setclassvariable (classvariablel : in out integer);

instance method Delete;

end Alpha;

107

2. Alpha-bodyCV.ca

with text-io;
use text-io;

Class body Alpha is
package integer.inout is new integerjo(integer);
use integer.inout;
class_variablel : Integer;
Value: integer;

method Create (newinstance : out Objectid) is
begin

newinstance := INSTANTIATE;
put line("in method create");

end Create;

instance method Getclassvariable is
begin

put.line ("The current value of the class_variablel at this object is:");
put(class-variablel);
new_line;

end Get-classvariable;

instance method Setclassvariable (class_variablel: in out integer) is
begin

putJine ('The new value of the classvariablel is set ");
puLline ("and is :");
put(dass variablel);
newline;

end Setclassvariable;

instance method Delete is
begin

putline('Now we delete from the memory this instance of class Alpha");
DESTROY;

end Delete;

end Alpha;

108

3. Progrm..CV...rans.ca

with Alpha;
use Alpha;

procedure proj is

class_variable:integer;
one: integer:=l;
two: integer=2;
Objectl Object -id;
Object:2 Object-d;

begin

Objectl := Alpha.Class-object;
send (Objecti, Create, new-instance => Objecti);
send (Objecti, Get-class-variable);
send (Objecti, Set-class-variable, class-yariablel => one);
send (Objecti, Get-class-variable);
send (Objecti, Delete);

Object2 :=Alpha. Class-object;
send (Object2, Create, new instance => Object2);
send (Object2, Get -class -variable);
send (Object2, Set-class-variable, class-variablel => two);
send (Object2, Get class variable);
send (Object2, Delete);

end proj;

109

4. Mlpha-oneada

WITH ClassicExecutive; USE Classic-Executive;
WITH Unchecedeallocation;
WITH UncheckedConversion;
WITH System;
with Alpha;
with COMMON;
use COMMON;
with CHANNELS;

procedure Alpha..pne is

C: CHANNELS.CHANNELREF: CI-ANNELS.OUTPARAMETERS, (2);

RESULT: mnt_16;
Object2: Object-id;

begin
Object2 := Aipha.Class-object;

DECLA!.qE
TYr' Parameter-Type IS RECORD

Newjnstanc.- :Objectid;
'91. RECORD;

r- arameterData :ParameterType;

BEGIN
send (Object2, 1, Assign (Parameter_-Data'Address))
Objeet2 := ParameterData.NewInstance;

END;

RESULT :=2;

INTEGERIO10write(C, RESULT);

send (Object2, 4)

end Alphaone;

110

5. Alpha-two.ada

WITH ClassicExecutive; USE ClassicExecutive;
WITH UncheckedDeallocation;
WITH UncheckedConversion;
WITH System;
with Alpha;
with textio;
with COMMON;
use COMMON;
with CHANNELS;

procedure Alpha-two is

C: CHANNELS.CHANNELREF:= CHANNELS.INPARAMETERS (2);

result: int_16;
Object1 : Object id;

begin

Object1 := Alpha.Class-object;

DECLARE

TYPE ParameterType IS RECORD
NewInstance : Object id;

END RECORD;

ParameterData : Parameter_Type;

BEGIN
send (Objectl, 1, Assign (ParameterData'Address));
Object1 := ParameterData.NewInstance;

END;

send (Objectl, 2);

send (Objectl, 3);

111

text-jo-put("I am going to read");

integerjo.read(C, result);

textjio.put..lne(int_16'LMAGE(result));

send (Objecti, 2)

send (Objectl, 4)

end Alpha-two;

112

6. ProgramCVjtransscript

in method create
The current value of the classvariablel at this object is:

0
The new value of the classvariablel is set
and is:

1

I am going to read 2
The current value of the class varaiblel at this object is:

1
Now we delete from the memory this instance of class Alpha

113

APPENDIX E - METHOD INSTANCE VARIABLES

A. CLASSES WITHOUT INHERITANCE RELATION
1. Alpha-spec-miv.ca

class Alpha is

method Create (NewInstance : out Objectd);

instance method MethodX(temp_variable : in character);

instance method MethodY(tempvariable : in character);

instance method Method_Z;

instance method Delete;

end Alpha;

114

2. Alpha..body-.miv.ca

with text-io;
use text-io;

* Class body Alpha is

instance -variablel :instance Character;
* X-im :instance Character;

Y imn :instanice Character;

method Create (new-instance :out Object id) is

begin
new-instance :=INSTANTIATE;
putj- ine("in method create");

end Create;

instance method MethodX(temp..yariable: in character) is
X-miv : Character;
begin

X-miV := X-im;
put -line ("The value of X miv in this method is:");
new -line;
putX...miv);
new-line;
X-miv :=temp~yariable;
put-line ('The new value of X-miv in this method is set and is:");
puto(_miv);
new-line;
X -im := X -miv;

end Method_X;

instance method MethodY(temp..variable: in character) is
Y-miv : Character;
begin

Y-miV := Y-im;
put-line ('The value of Y-miv in this method is:");
new-line;
put(Y...miv);
new-line;
Yjniv := temp~variable,
putjine ('Thbe new value of Y-nmiv in this method is set and is:");

115

put(YXmiv);
newline;
Y_im :=Ymiv;

end MethodY;

instance method MethodZ is
begin

new-line;
end Method-Z;

instance method Delete is
begin

DESTROY;
end Delete;

end Alpha;

116

3. Program-.miv.ca

with Alpha;
with text-io; use text-io;

procedure program-miv is

Objecti Objectj-d;
Object2: ObjecLid;

begin
putjine('Here is the beginning of the objecti");
Objecti : Alpha.Class-object;
send (Objecti, Create, new-instance => Objecti);
put -ine"ere is the MethodX of the objecti");
send (Objecti, MethocLX, temp..yariable => WX);
put..line("- #)
putjine"Here is the MethodY of the objecti");
send (Objectl,MethodY Y, tempyvariable => 'Y');

putjine("Here is the MethodX of the objecti ");
send (Objecti, MethodX, temp-variable => 'Z');

put -ine("Here is the MethodY of the objecti");
send (Objectl,MethodY ,temp..yariable => 'W);

putjine("En- f I-----------
new-line;

putjine("Here is the beginning of the object2");
Object2: Alpha.Class-object;
send (Object2, Create, new-instance => Object2);
put -ine("Here is the MethodX of the object2");
send (Object2, Method-.X, temp-yariable => 'K);
put .lineC
putjine"Here is the MethodY of the object2");
send (Object2,MethodY Y, temp-yariable => VL);
put..line(" -I
putjine("Here is the MethodX of the object2");
send (Object2, Method-X, temp..yariable => 'M');
put..line("------

117

putjineC'Here is the MethodY of the object2");
send (Object2,Metho&Y , temp..yanable => 'N');
putjine("
new - ine,
putjine('End of A
new-line;

putjine("Now we destroy the objects");
send (Objecti, Delete);
send (Object2, Delete);

end programmiv;

118

4. Program-miv.script

Here is the beginning of the objecti
in method create
Here is the MethodX of the object1
The value of Xmiv in this method is:

The new value of X_miv in this method is set and is:
x

Here is the MethodY of the objecti
The value of Ymiv in this method is:

The new value of Ymiv in this method is set and is:
Y

Here is the MethodX of the objecti
The value of Xmiv in this method is:
x
The new value of Xmiv in this method is set and is:
z

Here is the MethodY of the objecti
The value of Ymiv in this method is:
Y
The new value of Ymiv in this method is set and is:
W

End of Al-------

Here is the beginning of the object2
in method create
Here is the MethodX of the object2
The value of Xmiv in this method is:

The new value of Xmiv in this method is set and is:
K

119

Here is the Method_Y of the object2
The value of Ymiv in this method is:

The new value of Y_miv in this method is set and is:
L

Here is the Method_X of the object2
The value of Xmiv in this method is:
K
The new value of Xmiv in this method is set and is:
M

Here is the MethodY of the object2
The value of Y_miv in this method is:
L
The new value of Ymiv in this method is set and is:
N

End of A2---------------

120

B. CLASSES WITH INHERITANCE RELATION

1. Betaspecmiv.ca

class Beta is

superclass Alpha;

method Create (NewInstance out Object_id);

instance method Delete;

end Beta;

121

2. Beta-body-miv.ca

with text_io;
use text-io;

Class body Beta is

method Create (new_instance : out Objectid) is

begin
newinstance := INSTANTIATE;
putjline("in method create");

end Create;

instance method Delete is
begin

send (super, Delete);
DESTROY;

end Delete;

end Beta;

122

3. Program...mivjinher.ca

with Alpha;
with Beta;
with text-io; use text io;

procedure programn.miv inher is

ObjectAl :Object-id;
ObjectA2: Objectjd;
ObjectB1 Object-id;
ObjectB2: Object-id;

begin

putjine("Here is the beginning of the objectAll";
ObjectAl :=Alpha.Class-object;
send (ObjectAl, Create, new -instance => ObjectAl);
put -ine("Here is the Method_-X of the objectAl ");
send (ObjectAl, MethodX, temp..yariable => WX);

putjine("Here is the Method_-Y of the objectAl ");
send (ObjectAl,Method-Y, temp-yariable => 'Y');

putjine("Here is the Method_-X of the objectAl ");
send (ObjectAl, Method-X, tentp-variable => 'Z');
put line("--- ----------------)
putjine("Here is the Method_-Y of the objectAl");
send (ObjectALMethod-Y, temp..yariable => 'W);

new lie;
put Ine('End of Al
new-line;

putjine("Here is the beginning of the objectBl");
ObjectBl : Alpha.Class-object;
send (ObjectBL, Create, new -instance => ObjectBl);
put -line("Here is the MethodX of the objectBl");
send (ObjectBl, Method-X, temp variable => 90';
put -ine(" 1)
put -line("Here is the MethodY of the objectBl');
send (ObjectBLMethod.Y , temp variable => 'Y');
put-.line("

123

putjine("Here is the MethodX of the objectBl");
send (ObjectB1, MethodX, temp..yariable => 'Z');

putjine("Here is the Method_-Y of the objectBil);
send (ObjectBl,MethodYI temp-yariable => 'W');
put-ine("---
new-line;
putjine("End of B-)
new-line;

putjine("Hiere is the beginning of the objectA2");
ObjectA2 :=Alpha.Class-object;
send (ObjectA2, Create, new-instance => ObjectA2);
putjine("Here is the MethodX of the objectA2");
send (ObjectA2, MethodX, temp-yariable => 'K);
put-ineC' -

putjine('Here is the MethodY of the objectA2");
send (ObjectA2,MethodY I texnp~yariable => VL);
put -fine("----1
putjine("Here is the MethodX of the objectA2");
send (ObjectA2, MethodX, temp-yariable => WM);
put -fine("-1)
putjine("Here is the MethodY of the objectA2");
send (ObjectA2,MethodY I temp~yariable => 'N');

new -line;
putjine("End of A2-------- ---------- _

new-line;

putjine("Here is the beginning of the objectB2");
ObjectB2 :=Alpha.Class-object;
send (ObjectB2, Create, new-instance => ObjectB2);
put-ine"ere is the MethodX of the objectB2");
send (ObjectB2, MethodX, tenip-yariable => 'K');

put-ine("IHere is the MethodY of the objectB2");
send (ObjectB2,MethodY I temp~yariable => 'LU);
put ine("1)
putline('Here is the MethodX of the objectB2");
send (ObjectB2, MethodX. temp-yariable => 'M');

putjine("Here is the MethodY of the objectB2");

124

send (ObjectB2,MethodY , temp-variable => 'N');

newjine;
put-ine("End of B-)
new-line;

putjine('Now we destroy the objects");
send (ObjectAl, Delete);

* send (ObjectA2, Delete);
send (ObjectB1, Delete);
send (ObjectB2, Delete);

end program-mivjinher;

4

125

4. Programu'vjnher.script

Here is the beginning of the objectAl
in method create
Here is the MethodX of the objectAl
The value of Xmiv in this method is:

T'he new value of X_miv in this method is set and is:
x

Here is the MethodY of the objectAl
The value of Ymiv in this method is:

The new value of Ymiv in this method is set and is:
Y

Here is the MethodX of the objectAl
The value of Xmiv in this method is:
x
The new value of Xmiv in this method is set and is:
z

Here is the MethodY of the objectAl
The value of Ymiv in this method is:
Y
The new value of Y miv in this method is set and is:
W

End of Al---

Here is the beginning of the objectB1
in method create
Here is the MethodX of the objectB1
The value of Xmiv in this method is:

The new value of X_miv in this method is set and is:
x

Here is the Method_Y of the objectB1
The value of Ymiv in this method is:

126

The new value of Y miv in this method is set and is:
Y

Here is the MethodX of the objectRl
The value of X miv in this method is:
x
The new value of X miv in this method is set and is:
z

Here is the MethodY of the objectB1
The value of Y miv in this method is:
Y
The new value of Y miv in this method is set and is:
W

End of B1

Here is the beginning of the objectA2
in method create
Here is the MethodX of the objectA2
The value of Xmiv in this method is:

The new value of Xmiv in this method is set and is:
K

Here is the MethodY of the objectA2
The value of Y miv in this method is:

The new value of Xmiv in this method is set and is:
L

Here is the MethodX of the objectA2
The value of Xmiv in this method is:
K
The new value of Xmiv in this method is set and is:
M

Here is the MethodY of the objectA2
The value of Ymiv in this method is:
L

127

The new value of X miv in this method is set and is:
N

End of A2

Here is the beginning of the objectB2
in method create
Here is the MethodX of the objectB2
The value of Xmiv in this method is:

The new value of Xmiv in this method is set and is:
x

Here is the MethodY of the objectB2
The value of Ymiv in this method is:

The new value of Y miv in this method is set and is:
Y

Here is the MethodX of the objectB2
The value of Xmiv in this method is:
x
The new value of X-miv in this method is set and is:
z

Here is the MethodY of the objectB2
The value of Ymiv in this method is:
Y
The new value of Ymiv in this method is set and is:
W

End of B2--

Now we destroy the objects

128

APPENDIX F - METHOD CLASS VARIABLES

A. CLASSES WITHOUT INHERITANCE

1. Alpha-.spec..mcv.ca

class Alpha is

method Create (NewInstance :out Object-id)

instance method Method&X(temp_variable :in character);

instance method MethodLY(temp-variable :in character);

instance method Delete;

end Alpha;

129

2. Alpha-bodyamcv.ca

with textjo;
use textio;

Class body Alpha is

X mcv : Character;
Y-mcv : Character;

method Create (new-nstance : out Objectid) is
begin

newinstance := INSTANTIATE;
putjine("in method create");

end Create;

instance method Method_X(temp_variable: in character) is
begin

putline ('"The value of Xmcv in this method is:");
newline;
put(X mcv);
newline;
X_mcv := temp_variable;
put-line ("The new value of my in this method is set and is:");
put(X mcv);
newline;

end MethodX;

instance method MethodY(tempvariable: in character) is
begin

putJine ("The value of Ymcv in this method is:';
new_line;
put(Yjmcv);
new_line;
Y mcv := temp_variable;
put.line ("The new value of mv in this method is set and is:");
put(Yjmcv);
new_line;

end MethodY;

130

instance method Delete is
begin

DESTROY;
end Delete;

end Alpha;

131

3. Program-.mcv.ca

with Alpha;
with text-io; use text-io;

procedure program-mcv is

Objecti Object-id;
Object2 :Objecid;

begin

put-ine("Here is the beginning of the objecti");
Objecti : Alpha.Class object;
send (Objecti, Create, new-instance => Objecti);
putjine("Here is the MethodX of the objecti");
send (Objecti, Method-X, temp-variable => WX);

putiine("Here is the MethodY of the objecti");
send (ObjectlMethod Y, temp-variable => 'Y');

putj- ine("Here is the Method_-X of the objecti");
send (Objecti, Method..X, temp-yariable => 'Z');
putlie"---i)
putjine("Here is the Method_-Y of the objecti");
send (Objectl,Method-Y, tempyvariable => 'W);

putjine("End of Al---
new-line;

putjine"Here is the beginning of the object2");
Object2: Alpha.Class object;
send (Object2, Create, new-instance =>' Object2);
putjine('Here is the MethodX of the object2");
send (Object2, Method)C, temp.-yariable => 'K);
put line("- ---)
putjine("Here is the MethodY of the object2");
send (Object2,Method-Y , temp-yariable => VL);

putj- ine("H-ere is the MethodX of the object2");
send (Object2, Method.X, temp-variable => 'M');

putjine("-ere is the MethodY of the object2");

132

send (Object2,MethodY, tempyariable => 'N');put-line("';
putJine("End of A2-");
newline;

putline('Now we destroy the objects");

send (Objecti, Delete);

send (Object2, Delete);

end programmcv;

133

4. Program_mcv.script

Here is the beginning of the objectl
in method create
Here is the MethodX of the objectl
The value of Xmrcv in this method is:

The new value of Xjmv in this method is set and is:
x

Here is the MethodY of the object1
The value of Ymcv in this method is:

The new value of Y-mcv in this method is set and is:
Y

Here is the MethodX of the objectl
The value of Xmcv in this method is:
x
The new value of Xmcv in this method is set and is:
z

Here is the MethodY of the objectl
The value of Ymcv in this method is-
Y
The new value of Ymcv in this method is set and is:
W

End of AI---

Here is the beginning of the object2
in method create
Here is the MethodX of the object2
The value of Xmcv in this method is:
z
The new value of Xmcv in this method is set and is:
K

Here is the MethodY of the object2
The value of Ymcv in this method is:
W
The new value of Y mcv in this method is set and is:
L

134

Here is the MethodX of the obJect2
The value of Xmcv in this method is:
K
The new value of X mcv in this method is set and is:
M

Here is the MethodY of the object2
The value of Y mcv in this method is:
L
The new value of Y mcv in this method is set and is:
N

End of A2.

Now we destroy the objects

135

B. CLASSES WITH INHERITANCE RELATION

1. Beta-pec..mcv.ca

class Beta is

superclass Alpha;

method Create (NewInstance : out Objectid);

instance method Delete;

end Beta;

136

2. Beta..bodymcv.ca

with text_io;
use text-io;

Class body Beta is

method Create (new-instance : out Objectid) is
begin

new-instance := INSTANTATE;
putline("in method create");

end Create;

instance method Delete is
begin

send (super, Delete);
DESTROY;

end Delete;

end Beta;

137

3. Program...mcvinher.ca

with Alpha;
with Beta;
with textio;
use text-10;

procedure programn mcv inher is

ObjectAl :Object id;
ObjectA2: Object-id;
ObjectB1 Objectid;
ObjectB2 :Objectjd;

begin

put-line('Here is the beginning of the objectAl");
ObjectAl :=Alpha.Class-object;
send (ObjectAl, Create, new-instance => ObjectAl);
putjine("Here is the MethodX of the ObjectAl");
send (ObjectAl, MethodX, temp-yariable => WX);

putjine("Here is the MethodY of the ObjectAl");
send (ObjectALMethodY , temp-yariable => 'Y');

putjine("Here is the Method_-X of the ObjectAl ");
send (ObjectAl, MethodX, tempyariable => 'Z')

putjine("Here is the MethodY of the ObjectAl");
send (ObjectAl,MethodY , temp-variable => 'W);
put jine("--
putiine("End of A-----------~)
new-line;

putjine("Here is the beginning of the objectBl ");
ObjectB1 : Alpha.Class-object;
send (ObjectBl, Create, new-instance => ObjectBl)
putjine("Here is the Method_-X of the ObjectBl");
send (ObjectBl, MethodXP temp..yariable => WX);
put .. line(" 1
putjine("Here is the MethodY of the ObjectBl");
send (ObjectBl,MethodY , temp..yariable => "Y');

138

putline("Here is the MethodX of the ObjectBl");
send (ObjectBl, Method_X, temp variable => 'Z');

putjine('Here is the MethodY of the ObjectBl');
send (ObjectBl,MethodY , temp-yariable => 'W);
put-ie
putjine('End of Al
new-line;

putjine("Here is the beginning of the ObjectA2")
ObjectA2 :=Alpha.Class-object;
send (ObjectA2, Create, new-instance => ObjectA2);
putjine('Here is the MethodX of the ObjectA2")
send (ObjectA2, Method-X, temp_variable => 'K');
put ine("-- 1)
putjine("Here is the MethodY of the ObjectA2");
send (ObjectA2,MethodY , temp_variable => 'L);
put...ine(" - - -)

putjine("Here is the MethodX of the ObjectA2");
send (ObjectA2, Method X, temp-variable => 'M');

put -ine(CHere is the MethodY of the ObjectA2");
send (ObjectA2,MethodY , temp-variable => 'N);
put...line(-----------------

put-ine('Here is the beginning of the ObjectB2");
ObjectB2 :=Aipha.Class-object;
send (ObjectB2, Create, new-instance => ObjectB2);
putjine("Here is the MethodX of the ObjectB2");
send (ObjectB2, Method_X, temp..yariable => 'K);

putjine("rei- teMehd_-f h ibetB2);

putjine("Here is the MethodX of the ObjectB2');
send (ObjectB2. MethodX , temp~variable => 'M);

putjine("Here is the MethodY of the ObjectB2");
send (ObjectB2, Method_Y, temp~yariable => 'N');

139

putjine("Now we destroy the objects");

send (ObjectAl, Delete);

send(ObjctB1 Delte)

send (ObjectA, Delete);

send (ObjectB2, Delete);

end program mcvjinher;

140

4. Programjncvjnher.script

Here is the beginning of the objectAl
in method create
Here is the Method_X of the objectAl
The value of Xmcv in this method is:

The new value of X_mcv in this method is set and is:
x

Here is the MethodY of the objectAl
The value of Ymcv in this method is:

The new value of Ymcv in this method is set and is:
Y

Here is the MethodX of the objectAl
The value of Xmcv in this method is:
x
The new value of Xmcv in this method is set and is:
z

Here is the MethodY of the objectAl
The value of Ymcv in this method is:
Y
The new value of Ymcv in this method is set and is:
W

End of Al-

Here is the beginning of the objectB1
in method create
Here is the MethodX of the objectBl
The value of Xmcv in this method is:

The new value of Xmcv in this method is set and is:
x

Here is the MethodY of the objectB1
The value of Ymcv in this method is:

141

The new value of Y-mcv in this method is set and is:
Y

Here is the MethodX of the objectBl
The value of X mcv in this method is:
x
The new value of Xmcv in this method is set and is:
z

Here is the MethodY of the objectB1
The value of Y_mcv in this method is:
Y
The new value of Y_mcv in this method is set and is:
W

End of B1

Here is the beginning of the objectA2
in method create
Here is the MethodX of the objectA2
The value of Xmcv in this method is:

The new value of Xmcv in this method is set and is:
K

Here is the MethodY of the objectA2
The value of Ymcv in this method is:

The new value of Xmcv in this method is set and is:
L

Here is the Method_X of the objectA2
The value of Xmcv in this method is:
K
The new value of Xmcv in this method is set and is:
M

Here is the Method_Y of the objectA2
The value of Ymcv in this method is:
L

142

The new value of X mcv in this method is set and is:
N

End of A2

Here is the beginning of the objectB2
in method create
Here is the MethodX of the objectB2
The value of X mcv in this method is:

The new value of X mcv in this method is set and is:
x

Here is the MethodY of the objectB2
The value of Y mcv in this method is:

The new value of Y mcv in this method is set and is:
Y

Here is the MethodX of the objectB2
The value of Xmcv in this method is:
x
The new value of X mcv in this method is set and is:
z

Here is the MethodY of the objectB2
The value of Y mcv in this method is:
Y
The new value of Y mcv in this method is set and is:
W

End of B2---

Now we destroy the objects

143

APPENDIX G - CONCURRENCY WITH METHOD VARIABLES

A. METHOD CLASS VARIABLE
1. Alpha..spec..CV.ca

class Alpha is

method Create (NewInstance :out Obj d)

instance method Method-X(temp-variable :in character);

instance method Method-Y(temp-variable :in character);

instance method Delete;

end Alpha;

144

2. Alpha-bodyCV.ca

with textio;
use textio;

Class body Alpha is

X_mcv : Character;
Y_mcv : Character;

method Create (newinstance : out Objectid) is
begin

newinstance := INSTANTIATE;
put-line("in method create");

end Create;

instance method MethodX(tempvariable: in character) is
begin

put-line ('The value of Xmcv in this method is:");
newline;
put(X mcv);
new-line;
X_mcv := tempvariable;
putjline ('"he new value of mv in this method is set and is:");
put(X.mcv);
newline;

end Method_X;

instance method MethodY(tempvariable: in character) is
begin

putline ("The valie of Y mcv in this method is:");
newline;
put(Yjmcv);
newline;
Y_mcv := tempvariable;
put-line ('The new value of mv in this method is set and is:");
put(Yjmcv);
newline;

end MethodY;

145

instance method Delete is
begin

DESTROY;
end Delete;

end Alpha,

146

3. Program...mcv..concca

with Alpha;
with text-io; use text io;

* procedure program mcv-conc is

pragma priority(1);

task ti is
pragma priority(l);

end;

task body ti is
Objectl Object-id;
begin
putjine("Here is the beginning of the objecti");
Objecti : Alpha.Class-object;
send (Objecti, Create, new-instance => Objecti);

put -ine("Here is the MethodX of the objecti");
send (Objecti, MethodX, temp..yanable => WX);
put lie" -I
putjine("Here is the Method_-Y of the objectl");

send (Objectl,MethodY,. temp-variable => 'Y');

putjine("Here is the Method_-X of the objecti");
send (Objectil, MethodX, temp-.Yariable => 'Z');

putjine("Here is the MethodY of the objecti ");
send (Objectl,MethodY , tempyvariable => 'W);
put .ie'-------------
new line;
put ine("End ofAl---- ---
new line;

end t1;

task t2 is
pragma priority(I);

end;

147

task body t2 is

Object2: Objectid;

begin

putine("Here is the beginning of the object2");
Object2 := Alpha.Class-object;,
send (Object2, Create, new-instance => Object2);
put..line("Hiere is the Method..X of the obeCt-);
send (Object2, MethodX, temp.. ariable => 'K');

put-line("Here is the MethodY of the object2");
send (Objet2MethodY , temp..yariable => 'L');

put-ine("Hiere is the MetodX of the object2");
send (Object2, Method_X, temp variable => 'M');
putln("1)
putjine("Here is the MethodY of the object2"),
send (Object2,MethodY , temp-yariable => 'N');
put..ine("--
new-line;
put ine("End of A2---
new line;

end t2;

begin
put jine('main");

end program mcvsconc;

148

4. Program-mcvconc.script

Here is the beginning of the object2
in method create
Here is the Method_X of the object2
The value of X mcv in this method is:

The new value of mv in this method is set and is:
K

Here is the MethodY of the object2
The value of Y mcv in this method is:

The new value of mv in this method is set and is:
L

Here is the Method X of the object2
The value of X mcv in this method is:

K
The new value of mv in this method is set and is:
M

Here is the MethodY of the object2
The value of Y mcv in this method is:

L
The new value of mv in this method is set and is:
N

End of A2----

Here is the beginning of the objecti
in method create
Here is the MethodX of the objecti
The value of X mcv in this method is:

M
The new value of mv in this method is set and is:
x

149

Here is the MethodY of the objectl
The value of Y mcv in this method is:

N
The new value of mv in this method is set and is:
Y

Here is the MethodX of the objectI
The value of X-mcv in this method is:

x
The new value of mv in this method is set and is:
z

Here is the MethodY of the objecti
The value of Y mcv in this method is:

Y
The new value of mv in this method is set and is:
W

End of Al--------

main

150

B. METHOD INSTANCE VARIABLE

1. Alphaspec_miv.ca

class Alpha is

method Create (NewInstance : out Objectid);
instance method Method X(temp_variable in character);

instance method Method-Y(temp variable : in character);

instance method Delete;

end Alpha;

151

2. Alpha-body-miv.ca

with textio;
use textio;

Class body Alpha is

instancevariablel : instance Character;
X_im :instance Character;
Y_im :instance Character;

method Create (newinstance : out Object id) is

begin
newinstance := INSTANTIATE;
putline("in method create");

end Create;

instance method Method_X(temp-yariable: in character) is
X_miv : Character;
begin

X_miv := Xim;
put line ("The value of Xmiv in this method is:");
new_line;
put(X_miv);
newline;
X_miv := temp variable;
put-line ("The new value of Xmiv in this method is set and is:");
put(Xmiv);
newline;
X_im := X_miv;

end MethodX;

instance method MethodY(temp-variable: in character) is
Y miv : Character;
begin

Y-miv := Y-im;
puLline ('"The value of Y miv in this method is:");
newline;
put(Ymiv);
newline;
Y_miv := temp-variable;
put-line (" Te new value of Ymiv in this method is set and is:");

152

put(Ymiv);
new-line;
Y_im :=Y-miv;

end MethodY;

instance method Delete is
begin

DESTROY;
end Delete;

end Alpha;

153

3. Program-.miv...concxca

with Alpha;
with text-io; use text _io;

procedure program miv-conc is
pragma priority(l);

task ti is
pragma priority(l);

end;

task body ti is
Objecti Objectjid;
begin

putjine("Here is the beginning of the objecti");
Objecti : Alpha.Class-object;
send (Objecti, Create, new-instance -> Objecti);
put ine('Here is the MethodX of the objecti");
send (Objecti, MethodX, temp..ariable => WX);

putjine("Here is the Method_-Y of the objecti");
send (Object1,MethodY , temp..yariable => 'Y);

putjine("Here is the MethodX of the objecti");
send (Objecti, MethodX, temp-v.ariable => 'Z');

putjine("Here is the Method_-Y of the objecti)
send (Objectl,MethodY , temp-yariable => 'W);

new-line;
putjine("End of Al----- ----------
new-line;

end t1;

task t2 is
pragrna priority(l);

end;

154

task body t2 is
Object2: Objectid;
begin

put-line(CHere is the beginning of the object2");
Object2 :=Alpha.Class object;
send (Object2, Create, new-instance => Object2);
putjine("Here is the MethodX of the object2');
send (Object2, MethodX, temp variable => 'K);
put ine(------ #);

putjine("Here is the MethodY of the object2");
send (Object2,MethodY , tempyvariable => VL);
put...line(" 1)
putjine("Here is the Method_-X of the object2");
send (Object2, MethodX, temp~yariable => 'M);
pu-ine("---- -____)___

putjine('Here is the MethodY of the object2");
send (Object2,MethodY , temp..yariable => 'N);

new-line;
putjine("End of A2 ---- ----------------)
new -line;

end t2;

begin
putjine('main");

end program mivsconc;

155

4. Programjnivconc.script

Here is the beginning of the object2
in method create
Here is the MethodX of the object2
The value of Xmiv in this method is:

The new value of X_miv in this method is set and is:
K

Here is the MethodY of the object2
The value of Ymiv in this method is:

The new value of Ymiv in this method is set and is:
L

Here is the MethodX of the object2
The value of Xmiv in this method is:
K
The new value of Xmiv in this method is set and is:
M

Here is the MethodY of the object2
The value of Ymiv in this method is:
L
The new value of Ymiv in this method is set and is:
N

End of A2---

Here is the beginning of the object1
in method create
Here is the MethodX of the objecti
The value of Xmiv in this method is:

The new value of Xmiv in this method is set and is:
x

156

Here is the Method_Y of the objecti
The value of Ymiv in this method is:

The new value of Y_miv in this method is set and is:
Y

Here is the MethodX of the object1
The value of Xmiv in this method is:
x
The new value of Xmiv in this method is set and is:
z

Here is the MethodY of the object1
The value of Y_miv in this method is:
Y
The new value of Ymiv in this method is set and is:
W

End of Al--------------------

main

157

LIST OF REFERENCES

[AA90] Alsys Ada User Manuals 4.4 System, Alsys Ada Compilation System for the
Transputer, Alsys Ada, May 1990.

[Act90] The Whitewater Group, Actor User's Manual, Volume I and Volume 2, The
Whitewater Group, Inc., May 1990.

[Agh86] Agha, G., Actors: A model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, Mass, 1986.

[Bar89] Barnes, J.G.P., Programming in Ada(3rd Edition) , International Computer
Science Series, Addison-Weley Publishers, ISBN 0-201-17566-5, 1989.

[BT88] Bal, H.E. and Tanenbaum, A.S., "Distributed Programming with Shared
Data", IEEE Int'l Conf. on Computer Language 1988, pp. 82-91, Miami Beach
FL, October 1988.

[Boo87] Brooch, G., Software Engineering with Ada(2nd Edition), Benjamin
Cummings Publishing Company, Menlo Park CA 1987.

[Bro89] Bronnenberg, W., "POOL and DOOM", Lecture Notes in Computer Science
365, pp. 356-373, PARLE'89 vol I, Eindhoven, Netherlands, June 1989.

[BY87] Briot, J.P. and Yonezawa A., "Inheritance and Synchro-nization in
Concurrent OOP", Lecture Notes in Computer Science 276 , pp. 32-40,
ECOOP'87, Paris, France 1987.

[BLW87] Burns, A., Lister, A.M., and Wellings, A.J., "A Review of Ada Tasking"
Lecture Notes in Computer Science 262 , Springer-Verlag Berlin Heidelberg
1987.

[BN91] Byrnes, R.B. and Nelson, M.L., "An Object-Oriented Simulation of
Autonomous Underwater Vehicle" 22nd Annual Pittsburgh Conference on
Modeling and Simulation, Computers, Computer Architectures, Vision,
Microprocessor in Education, pp. 1581-1588, Pittsburgh, PA, May 1991.

[DW89] Dally, J.W. and Wills, D.S., 'Universal Mechanisms for Concurrency",
Lecture Notes in Computer Science 365 , pp. 19-33, PARLE'89 vol I,
Eindhoven, Netherlands, June 1989.

158

[DT88] Danforth, S. and Tominson, C., 'Type Theories and Object- Oriented
Programming" Vol 20, No 1 of ACM Computing Surveys, pp. 29-72, March
1988.

[dPN91] de Paula, E.G. and Nelson, M.L., "Designing a Class Hierarchy", Proceedings
of the Technology of Object-Oriented Languages and Systems International
Conference 5 (TOOLS USA '91), pp. 203-218 Santa Barbara, CA, July 1991.

[H0871 Halbert, D.C. and O'Brien, P.D., 'Using Types and Inheritance in Object-
Oriented Programming" Vol 4, No 5 IEEE Software, pp. 71-79, September
1987.

[Has90] Hastings, A.B., "Distributed Lock Management in a Transaction Processing
Environment" pp. 22-31, IEEE Ninth Symposium on Reliable Distributed
Systems, Hunstsville, Alabama October 1990.

[Hor90] Horn C., "Is Object-Orientation a Good Thing for Distributed Systems?"
Lecture Notes in Computer Science 433 , Springer-Verlag Berlin Heidelberg
1990.

[INM891 INMOS, The Transputer Handbook, October 1989.

[Kim90] Kim, W., "Object-Oriented Databases: Definition and Research Directions"
Vol 2, No 3 IEEE Transactions on Knowledge and Data Engineering, pp. 327-
341, September 1990.

[KL89] Kim, W. and Lochovsky, F.H., Object-Oriented Concepts, Databases, and
Applications, ACM Press, Addison-Wesley Publishing, 1989.

[Low88] Low, C., "A Shared, Persistent Object Store", Lecture Notes in Computer
Science 322 , pp. 391-408, ECOOP'88, Oslo, Norway, August 1988.

[Mey88] Meyer, B., Object-Oriented Software Construction, Prentice Hall
International(UK), Hreartforshire, 1988.

[Mic88I Micallef, J., "Encapsulation, Reusability and Extensibility in Object-Oriented
Programming Languages" Vol 1, No 1, JOOP pp.12-34 April/May 1988.

[Nel90a] Naval Postgraduate School Report 52-90-024, An Introduction to Object-
Oriented Programming, by Nelson, M.L., April 1990.

[Nel90b] Naval Postgraduate School Report 52-90-025, Object-Oriented Database
Management Systems, by Nelson, M.L., May 1990.

159

[Nel90c] Naval Postgraduate School Report 52-90-026, Concurrent Object-Oriented
Systems, by Nelson, M.L., September 1990.

[Nel9la] Nelson, M.L., "An Object-Oriented Tower of Babbel", Vol 2, No 3, OOPS
Messanger pp. 3-11 July 1991.

[Nel9lb] Nelson, M.L, "Concurrency & Object-Oriented Programming" SIGPLAN
pp. 63-72, Vol 26, No 10, October 1991.

[Ng90] Ng, T.N., 'The Design and Implementation of a Reliable Distributed
Operating System-ROSE" pp. 2-11, IEEE Ninth Symposium on Reliable
Distributed Systems, Hunstsville, Alabama October 1990.

[NMO90] Nelson, M.L, Moshell, J.M., and Orooji, A., "A Relational Object-Oriented
Management Systems" pp. 319-323 International Phoenix Conference on
Computers and Communications (IPCCC'90), March 1990.

[NM921 Nelson, M.L. and Mota, R., "Object-Oriented Programming in Classic-Ada"
(draft).

[NS881 Nielsen, K. and Shumate, K., Designing Large Real-Time Systems with Ada,
McGraw-Hill, New York, 1988

[OM881 Oudshoom, M. and Marlin, C., "Describing Data Control in Programming
Languages", IEEE Int'l Conf. on Computer Language 1988, pp. 100-109, Miami
Beach Florida, October 1988.

[RB91] Rumbaugh, J., Blaha, M., and others, Object-Oriented Modeling and Design,
Prentice Hall, Englewood Cliffs, NJ, 1991.

[Seb89I Sebesta, W.S., Concepts of Programming Languages, The Benjamin/Cummings
Publishing Company, Redwood City, CA 1989.

[SM88] Shaer, S. and Mellor, S.J., Object-Oriented Systems Analysis: Modeling the
world in data, Englewood Cliffs, NJ, 1988.

[SW871 Shriver, B. and Wegner, P., Research Directions in Object-Oriented
Programming, MIT Press Series in Computer Systems, Caimbridge, Mass.,
1987.

[Sor88] Sorgaard, P., "Object-Oriented Programming and Computerized Shared
Material", Lecture Notes in Computer Science 322 , pp. 319-334, ECOOP'88,
Oslo, Norway, August 1988.

160

[SB86] Stefik, M. and Bobrow, D.G., "Object-Oriented Programming: Themes and
Variations", pp. 40-62 The Al Magazine Winter 1986.

[SN90] Steigerwald,R.A. and Nelson, M.L., "Concurrent Programming in Smalltalk-
80" Vol 25, No 28 of SIGPLAN Notices pp.27-39 August 1990.

[Sof89] Software Productivity Solutions, Classic-Ada User's Manual, Software
Productivity Solutions, Indialantic, FL, 1989.

V

[TS90] Tully, A. and Shrivastava, S.K., "Preventing State Divergence in Replicated
Distributed Programs" pp. 104-113, IEEE Ninth Symposium on Reliable
Distributed Systems, Hunstsville, Alabama October 1990.

[Weg87] Wegner, P., "Dimensions of Object-Based Language Design" OOPSLA'87
pp. 168-182, October 1987.

[WP88] Wiener, R.S. and Pinson, L.J., An Introduction to Object-Oriented
Programming and C++, Addison-Wesley Publishing Co, Reading, Mass,
1988.

[WWW90] Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing Object-Oriented
Software, Prentice Hall, Englewood Cliffs, NJ, 1990.

161

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. MAJ Michael L. Nelson, USAF 2
Computer Science Department, Code CSNe
Naval Postgraduate School
Monterey, CA 93943

4. CDR Gary J. Hughes, USN 2
Computer Science Department, Code CSHu
Naval Postgraduate School
Monterey, CA 93943

5. Embassy of Greece 4
Naval Attache
2228 Massachusettes Ave.,N.W.
Washington, D.C. 20008

5. LT Vassilios Theologitis, Hellenic Navy 3
G. Blessa 11
Papagou 15669
Athens, GREECE

162

